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Abstract. Shallow water tables near-streams often lead to
saturated, overland flow generating areas in catchments in
humid climates. While these saturated areas are assumed
to be principal biogeochemical hot-spots and important for
issues such as non-point pollution sources, the spatial and
temporal behavior of shallow water tables, and associated
saturated areas, is not completely understood. This study
demonstrates how geostatistical methods can be used to char-
acterize the spatial and temporal variation of the shallow wa-
ter table for the near-stream region. Event-based and sea-
sonal changes in the spatial structure of the shallow water
table, which influences the spatial pattern of surface satu-
ration and related runoff generation, can be identified and
used in conjunction to characterize the hydrology of an area.
This is accomplished through semivariogram analysis and in-
dicator kriging to produce maps combining soft data (i.e.,
proxy information to the variable of interest) representing
general shallow water table patterns with hard data (i.e.,
actual measurements) that represent variation in the spatial
structure of the shallow water table per rainfall event. The
area used was a hillslope in the Catskill Mountains region
of New York State. The shallow water table was monitored
for a 120 m×180 m near-stream region at 44 sampling lo-
cations on 15-min intervals. Outflow of the area was mea-
sured at the same time interval. These data were analyzed
at a short time interval (15 min) and at a long time interval
(months) to characterize the changes in the hydrologic be-
havior of the hillslope. Indicator semivariograms based on
binary-transformed ground water table data (i.e., 1 if exceed-
ing the time-variable median depth to water table and 0 if
not) were created for both short and long time intervals. For
the short time interval, the indicator semivariograms showed
a high degree of spatial structure in the shallow water table
for the spring, with increased range during many rain events.

Correspondence to:T. S. Steenhuis
(tss1@cornell.edu)

During the summer, when evaporation exceeds precipitation,
the ranges of the indicator semivariograms decreased during
rainfall events due to isolated responses in the water table.
For the longer, monthly time interval, semivariograms exhib-
ited higher sills and shorter ranges during spring and lower
sills and longer ranges during the summer. For this long time
interval, there was a good correlation between probability
of exceeding the time-variable median water table and the
soil topographical wetness index during the spring. Indicator
kriging incorporating both the short and long time interval
structure of the shallow water table (hard and soft data, re-
spectively) provided more realistic maps that agreed better
with actual observations than the hard data alone. This tech-
nique to represent both event-based and seasonal trends in-
corporates the hillslope-scale hydrological processes to cap-
ture significant patterns in the shallow water table. Geosta-
tistical analysis of the spatial and temporal evolution of the
shallow water table gives information about the formation of
saturated areas important in the understanding hydrological
processes working at this and other hillslopes.

1 Introduction

Shallow water tables are highly variable in both time and
space. This variability creates difficulty in predicting how
water tables respond to rainfall events and where and when
saturated areas occur when the water table rises to the sur-
face. This is troublesome because the position of the wa-
ter table can determine which hydrologic pathways are ac-
tive. Regions with high water tables can promote the occur-
rence of saturated areas leading to overland flow. On shallow
soils characterized by highly conductive topsoil underlain by
dense subsoil, and in regions where the ground water is close
to the soil surface, runoff can be generated from regions that
are or become saturated during rainfall events (e.g., Dunne
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and Black, 1970a, b; Steenhuis et al., 1995). Rainwater eas-
ily permeates these soils and, by-and-large, runs laterally as
subsurface flow on top of the restrictive layer down-slope to
accumulate in converging areas making these regions prone
to saturation. More water can be added to these regions
via direct rainfall or exfiltration from higher on the hills-
lope. When these regions saturate they produce runoff that
is commonly termed saturation excess overland flow. How
(i.e., exfiltration of converging subsurface flow or direct rain-
fall onto saturated areas) and what (i.e., old or new water)
water finds its way to these regions is not fully understood
making the variability in physical patterns of saturated areas
difficult to monitor and predict (Burns, 2002; McDonnell,
2003; Walter et al., 2005). The difficulty in capturing the
dynamics of these saturated regions stems from their non-
linearity in both space and time exhibited among rain events
and seasons. Due to this variability, researcher have coined
the term variable source area (VSA) to describe these areas
(e.g., Dunne and Black, 1970a, b; Hewlett and Hibbert, 1967;
Dunne et al., 1975). While important in a pure hydrology
perspective (i.e., predicting runoff amounts, peak timing in
hydrographs), representing the spatial and temporal nature of
VSAs is quintessential to modeling and managing contami-
nant flow pathways in natural environments. As observed by
Grayson et al. (2002), there has been an increased focus in
current research on spatial variability to account for where
contaminants come from and where to invest financial re-
sources to improve water quality. Although the concept has
been around for well over a quarter of a century, it is obvi-
ous that the formation of VSAs and how they influence water
quality is still a topic of interest for hydrologists.

Repeatedly, the call for better distributed data to aid in
understanding hydrological processes, especially for data
to identify processes controlling the formation of VSAs,
has gone out (Hillel, 1986; Klemeš, 1986; Hornberger and
Boyer, 1995; Agnew et al., 2006). New methods of collect-
ing and interpreting spatially distributed data to characterize
VSAs have become available. Snap shots of soil moisture
using various remote sensing techniques (Choudhury, 1991;
Engman, 1991; Blyth, 1993; Verhoest et al., 1998; Troch
et al., 2000) and field measurements (Western and Grayson,
1998; Mohanty et al., 2000; Meyles et al., 2003; Walker et
al., 2001; Wilson et al., 2004) have been used to locate re-
gions concentrating water. These sampling techniques, how-
ever, may not be applicable for all field sites. For exam-
ple, the extremely effective and increasingly popular tech-
nique incorporating time domain reflectrometry (TDR) sen-
sors mounted to an all-terrain vehicle (Tyndale-Biscoe et al.,
1998; Western and Grayson, 1998) is limited by field acces-
sibility. This type of sampling may not be an option for field
sites with large biota (e.g., trees, shrubs, corn), extreme geol-
ogy (e.g., steep slopes, boulders, large gullys), or excessive
amounts of surface water (e.g., ephemeral streams, saturated
source areas). Satellite remote sensing techniques have their
own difficulties, not the least of which include signal inter-

pretation, limited coverage, and low temporal and spatial res-
olution. While these methods are powerful, they are often
too temporally sparse (i.e., low frequency of sampling) to
capture the spatial evolution of VSAs. High temporal resolu-
tion measurements of water table depth are becoming readily
available due to inexpensive, self-contained, water level data
loggers (e.g., TruTrack, Inc). Loggers of this type can be
employed to monitor depth to water table from the field scale
up to the watershed scale. The ability to capture short term
changes in the water table depths makes it possible to observe
the effects of storm events. Since the position of the water
table during storm events is crucial to VSAs, these measure-
ment techniques provide information about where the runoff
is being produced. However, few techniques are available to
easily summarize this enormous mass of data. Here we will
show how geostatistics lend themselves naturally to charac-
terize spatial structure with semivariograms and kriged inter-
polation among points to obtain realistic spatial patterns of
water table heights and saturated areas.

Geostatistical analysis most commonly uses semivari-
ograms to define the variance between two observations as
a function of the distance separating them. The main semi-
variogram parameters are the nugget, the sill, and the range.
If a stable sill exists, the process is assumed stationary and
the sill can be thought of as the variance between two points
separated by a large distance. The range is the measure of
the spatial continuity and the maximum distance over which
spatial correlation affects the variable of interest. The nugget
represents the variance between two close measurements.
The nugget value is attributed to variance occurring at scales
smaller than the sample spacing and to the inherent sampling
device error. Within the realm of semivariogram techniques,
indicator semivariograms provide a method to capture ex-
treme values (Journel, 1983). Indicator semivariograms have
been used to assess risk of contamination in various con-
stituents such as heavy metals (Webster and Oliver, 1989;
Smith et al., 1993; Goovaerts and Journel, 1995) and assess
uncertainty in soil properties (McKenna, 1998; Pachepsky
and Acock, 1998; Goovaerts, 2001). In their most basic
form, indicator semivariograms treat data as a binary indi-
cator with respect to a threshold value (i.e., 1 if threshold
is exceeded; 0 if threshold is not exceeded). Both indicator
semivariograms and standard semivariograms describe spa-
tial structure by representing variability between observation
points. This spatial structure can, in turn, be used to inter-
polate between observation points using kriging. Kriging
provides a way to interpolate and visualize spatial patterns
based on observations. More complete discussions of semi-
variograms, and the associated kriging, along with many pos-
sible derivatives in algorithms and methodology are provided
in Goovaerts (1997), Deustch and Journel (1992), and Chilès
and Delfiner (1999).

Kriging of various forms has been used to interpolate maps
of potentiometric surfaces from water table data (Delhomme,
1978; Neuman and Jacobsen, 1984; ASCE, 1990). The goal
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of most research of this nature is how to best interpolate dis-
crete spatial observations into full coverage. To this end,
some research has looked at using existing information about
the landscape to supplement point observations of the wa-
ter table. Hoeksema et al. (1990) supplemented well data
with elevation in mapping of a phreatic surface using a co-
kriging approach. More recently, Desbarats et al. (2002) used
kriging with external drift incorporating the TOPMODEL
topographic index of Beven and Kirkby (1979) to interpo-
late water table elevations. Their results showed that predic-
tions made accounting for the traditional topographic index
resulted in non-physical water table behavior or higher than
observed fluctuations in groundwater in regions of sparse ob-
servations. Lyon et al. (2006) used indicator kriging (IK)
to incorporate soft data developed using logistic regression.
“Soft” data are local information that is a proxy to the vari-
able of interest and need not relate directly (Goovaerts, 1997)
as opposed to “hard” data which are actual measurements
of the variable of interest. Lyon et al. (2006) were able to
improve interpolations for low antecedent rainfall condition
rain events using pre-event water table positions as a predic-
tor of saturation. The analysis of Lyon et al. (2006) required
information about the pre-event depth to water table that may
not be available and cannot be extended beyond the bound-
aries of the study site. Also, the study made observations
on only large storm events and did not look at how spatial
structure of the water table changed through time.

This research looked at the spatial and temporal evolution
of the shallow water table in the near stream region of a head-
water catchment. The position of this shallow water table
was directly related to the formation of saturated source ar-
eas. Our goal was to characterize both short time interval
and long time interval variations, to thus better understand
event-based and seasonal hydrologic responses, in the spa-
tial structure of the shallow water table using semivariogram
analysis. This type of geostatistical analysis is capable of
representing large amounts of data easily. Depth to ground
water was measured at 44 locations for 5 min intervals from
March 2004 through August 2004. These data were used to
develop indicator semivariograms on a small-time interval,
event basis and probability of exceeding the time-variable
median depth to water table on a long-time interval, seasonal
basis. Both the event and seasonal influences can be incor-
porated into a kriging interpolation to visualize the spatial
patterns occurring in the shallow water table on the hillslope.
This incorporation provides a manner to supplement spatial
observations based on limited, discrete observations using an
understanding of the hydrological processes operating on the
hillslope. Also, this analysis provides a utility to represent
the variability of the shallow water table that affects the for-
mation of saturated regions in both time and space. This rep-
resentation gives insight to the dominant hydrological pat-
terns in terms of runoff generation at the hillslope scale. The
correct characterization and representation of such patterns
is essential for hydrologists interested in predicting water
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Fig. 1. Location of study site at Townbrook research watershed in
Catskill Mountain region of New York State showing positions of
sampling locations containing water level loggers (circles), stream
gauges (triangles), and rain gauge (square).

movement and chemical transport from the landscape to the
stream.

2 Site description and data

The 2.44 ha study site on New York State Department of
Environmental Protection (DEP) owned lands is part of a
2 km2 sub-watershed located in the southwest corner of the
37 km2 Townbrook watershed in the Catskill Mountain re-
gion of New York State (Fig. 1). The landuse on the study
site is uniformly grass/shrub with forested regions upslope
(south) the study area. A survey of more than 200 points was
conducted to supplement the existing 10 m digital elevation
model (DEM) and derive 1-m interval contours for identi-
fying small-scale topographic features. The study site cov-
ers the near stream region∼120 m along the stream (border-
ing the northern side of the study site) and∼180 m upslope
(south) from the stream and elevation varied from 585 m to
600 m above mean sea level with slopes varied from 0◦ to 8◦.
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Soil Survey Geographic Database (SSURGO) soil maps were
used to determine soil types and properties. Two soil types
dominate the study site. The northern (down slope) half of
the study site consisted of approximately 30 cm deep gravely
silt loam. The southern (up slope) half of the study site con-
sisted of approximately 56 cm deep silt loam. The soil is un-
derlain by a restrictive fractured bedrock layer. These shal-
low soils were typified by a higher hydraulic conductivity
(1.4×10−5 m/s) in the surface material and a lower hydraulic
conductivity (1.4×10−6 m/s) in deeper layers.

At 44 measurement locations piezometers were instru-
mented for continuous monitoring depth to water table. The
water levels in the upper 30 cm of the soil were recorded us-
ing WT-HR 500 capacitance probes manufactured by Tru-
Track, Inc, New Zealand. Levels were recorded at 5-min
intervals and averaged over 15-min intervals for the study
period from 10 March 2004 to 22 August 2004. The location
of the piezometers followed approximately two grid systems.
The first consisted of 20 loggers on a 10×10 m grid near the
stream (northern end) of the study site. In addition, 24 log-
gers were located on a large spacing 30×40 m grid to record
water table levels upslope from the stream. A few capaci-
tance probes failed for some periods to record data and need
to be repaired, recalibrated, or replaced. During these peri-
ods, the sampling location was removed from the data set and
assigned a “no data” value and not used in the analysis. At
most, two sampling locations from the 44 sampling locations
were assigned “no data” values at any given time. A tip-
ping bucket rain gauge with data logger was set on the site to
record rainfall amounts. Also, two water level loggers were
placed in the stream above and below the study site to gauge
the runoff from during the sampling period. These water
level loggers recorded the stream stage and were converted to
flow using rating curves developed for the stream at both lo-
cations. Each rating curve was based on seven current-meter
discharge measurements; 16% of all stream height observa-
tions required extrapolation beyond the highest known point
of the rating curve. Runoff from the hillslope was calculated
as the difference in flow downstream and upstream of the
study site with negative values during low flow conditions re-
moved. This was reasonable since there was only little catch-
ment area contributing from the other side of the stream for
this stream segment (Fig. 1). Rain data and stream data were
not available for the last two weeks of the study period (from
6 August).

3 Methods

3.1 Indicator variables

Water table observations were transformed to indicator vari-
ables to give information about water table positions deeper
than detectable by the piezometers. Indicator variables,
which constitute a non-linear transformation, allow for a

more comprehensive structural analysis and are more robust
to outlier values (Journel, 1983). In this way, indicator ap-
proaches allow for greater spatial correlation of extreme val-
ues (Journel and Alabert, 1989; Rubin and Journel, 1991).
Although they may not be appropriate for identification of
connectivity in some spatial patterns, semivariograms based
on indicator variables may provide additional information
over traditional, measurement-based semivariograms for data
clustering in space (Western et al., 1998a).

3.1.1 Short time intervals

To give a proportional number of observations above and be-
low the threshold, the time-variant median depth to water ta-
ble at each 15-min interval was used as the threshold. The
time-variant median provides the best defined, with greatest
range of continuity and confidence for spatially sparse data
indicator semivariograms (Journel, 1983). Indicator vari-
ables were, thus, defined as:

Ii(zc(t)) =

{
1 if zi(t) ≤ zc(t)

0 if zi(t) > zc(t)
(1)

where,Ii(zc) is the indicator value at sampling locationi,
zi(t) is the measured depth to water table at sampling loca-
tion i[cm] at a certain point in timet , andzc(t) is the me-
dian depth to water table [cm] at the same timet . The time-
variable threshold ensured that there were equal numbers of
zeros and ones in the data set at any time step. With a con-
stant threshold, the number of ones would be time-variable,
which would cause artifacts in the geostatistical analysis. It
should be noted that a one did not indicate a wet location
but rather a location that was wetter than 50% of the wells.
The sets of indicator variables for each 15-min time step were
used to characterize spatial structure, on a short time interval,
to describe event-based changes in the shallow water table.

3.1.2 Long time intervals

Long time interval spatial structure at the study site was eval-
uated by combining the 15-min data into monthly intervals.
Monthly intervals were selected because of their ability to
capture the seasonal variability of hydrologically active ar-
eas for this region (Walter et al., 2001; Agnew et al., 2006).
For each month (March through August), the frequency of
the water table at a sampling location exceeding the time-
variable median water table (i.e., how often was the water
table at a certain location among the 50% wettest locations)
was computed to give a probability of exceeding the thresh-
old. This frequency also describes the prior probability of ex-
ceeding the threshold used later for the development of soft
data.

3.2 Semivariogram generation

Semivariograms were constructed for both the short time
interval and the long time interval observations using the
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semivariance,γs(h), at a lag,h:

γs(h) =
1

2N(h)

∑
(i,j)

(Yi(z) − Yj (z))
2 (2)

where,N is the number of pairs,Yi(z) andYj (z) are the vari-
able of interest ati andj , respectively, with summation over
pairs (i, j). For the short time interval, the variable of interest
was the indicator values at pointsi andj instead of measured
values. For long time interval, the variable of interest was
the probability of exceeding the threshold ati andj . Plot-
ting the average semivariance for pairs grouped by separation
distance or grouped into “bins” defined by a “lag” distance
in semivariogram nomenclature against the average bin dis-
tance, sample semivariograms were created with Eq. (2) to
relate distance between sampling location and semivariance.
The sample semivariograms were calculated using 10 bins
with lags of 15 m. The number of bins and lag distance were
selected using the rule of thumb that the number of bins mul-
tiplied by the lag distance should be approximately half the
maximum separation distance (288 m for this site). For the
short time interval, the semivariance was standardized with
the variance of the observations to lower scatter around the
sill. The sample semivariograms were then represented using
a fitted equation or “model”. The exponential and spherical
models, both of which are widely used, were investigated
because they offer adequate representation of lags within the
range of the sample semivariograms. The exponential model
(Eq. 3) was selected for the remainder of this analysis be-
cause it better fit the sample semivariograms using a method
of weighted least squares (Cressie, 1985):

γe(h) = σ 2
0 +

(
σ 2

∞ − σ 2
0

) (
1 − e

−h
λ

)
(3)

γe(h) is the fitted semivariogram,σ 2
0 is the nugget,σ 2

∞ is
the sill, andλ is the correlation length. This model reaches
its sill asymptotically with the range (i.e., maximum distance
over which spatial correlation affects the variable of interest)
defined as 3λ.

Thus, for the short time interval data, indicator semivari-
ograms based on indicator values defined with Eq. (1) were
created and for the long time interval data, traditional semi-
variograms were created from the probability of exceeding
the time-variable threshold. Using an automated fitting pro-
cedure programmed in Matlab v7r14 (The Mathworks, Inc.,
2004) exponential models for both the short time interval
indicator semivariograms and long time interval semivari-
ograms were created. Since anisotropy was found to be min-
imal for the study site (Lyon et al., 2006), only omnidirec-
tional semivariograms were used in this study. The parame-
ters of these models describe the spatial structure of the shal-
low water table and were compared to measured runoff and
surface saturation on the hillslope. For this study, saturation
was considered when the depth to water table at a sampling
location was less than 5 cm, i.e., close to or at the soil sur-
face. The area representing each sampling location that sat-

urates was determined using Theissen polygons to compute
the portion of hillslope saturating.

3.3 Indicator kriging interpolations

3.3.1 Generating hard and soft data

Equation (1) was used to create hard data (i.e., indicator vari-
ables) from the short time interval data. To interpolation be-
tween sampling locations (for this and all subsequent inter-
polations), ordinary kriging was performed using the Geosta-
tistical Analyst extension available in ESRI© ArcMapTM v9
(ESRI, Inc., 2004). When using indicator variables, the re-
sulting IK is the probability of exceeding the defined thresh-
old. This indicator kriging using hard data creates a map to
visualize spatial patterns of saturation on the hillslope pre-
dicted using the short time interval observations.

A major advantage of the IK approach is its ability to ac-
count for soft data (Deutsch and Journel, 1992). With this
in mind, the second interpolation method for this study was
IK coupling hard data with soft data. Soft data can relate
prior probabilities about the indicator variables to auxiliary
information, such as existing geographic conditions (e.g. soil
map, topography). Agnew et al. (2006) demonstrated that the
soil topographic wetness index (STWI) was a good predictor
of saturation for this watershed based on a 30-year model-
ing simulation. To develop soft data for this study site, the
relationship between the prior probability (i.e., monthly fre-
quency a sampling location exceeding the time-variable me-
dian water table) and theSTWI was established.STWI is
defined as:

ST WI = ln

(
a

tanβ DK̂s

)
(4)

whereais the area of the upslope watershed per unit contour
length [m], tanβ is the local slope,D is the soil depth [m]
andK̂s is the mean saturated hydraulic conductivity [m/day].
Values fora and tanβ were determined for the study site
using theD∞ algorithm of Tarboton (1997);D andK̂s were
taken from SSURGO soil distribution maps for the study site.

TheSTWIvalues from each sampling location were cate-
gorized into unit intervals (i.e., sampling locations withSTWI
values between 8 and 9 in the first category, between 9 and
10 in the next, etc.) and the averageSTWIwas evaluated for
each interval. This resulted in six total intervals. The average
prior probability for exceeding the median water table was
also computed for each interval. A linear function relating
the two was created such that:

P = mxST WI + b (5)

whereP the prior probability of exceeding the threshold,
xST WI is the averageSTWIfor each unit interval, andm and
b are the slope and intercept, respectively. This defined prior
probability at locations with no observations and was used to
create a spatially continuous prior probability map based on
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Fig. 2. Typical indicator semivariograms from the short time inter-
val data for the study site for(A) 31 March, 06:00,(B) 2 May, 20:30,
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are the normalized sample indicator semivariogram and the curves
are the fitted exponential models.

STWI. This map is soft data based on seasonal trends for the
hillslope.

3.3.2 Combining hard and soft data

Residuals were evaluated between the hard data available at
sampling locations and the soft data, i.e.,SWTI, map. These
residuals where then interpolated and merged with the soft
data to incorporated prior probability. This is consistent with
the method for incorporating soft data given in Goovaerts
(1997). For comparison, the interpolation made using hard
data alone (or traditional IK) and the interpolation combing
hard and soft data were conducted on data from the six rain-
fall events causing the highest median water tables for the
spring period (March through May).
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Fig. 3. Short time interval measurements for the study site from 10
March through 22 August of(A) rainfall [cm], (B) runoff [m3/s],
and(C) median depth to water table [cm]. For each indicator semi-
variogram, the(D) range parameter from exponential model [m].
Circles on (C) and (D) show when in time the indicator semivar-
iograms in Fig. 2 occur and the portion of (D) indicated with a
dashed line is where number of sampling sites below minimum de-
tection level is greater than half all sampling sites.

4 Results

4.1 Short time interval

Exponential models were fitted to the indicator semivari-
ograms for various median water tables and at various times
in the sampling period (Fig. 2). Many of the indicator semi-
variograms had a well-defined sill and identifiable ranges.
These indicator semivariograms provide information about
the spatial structure of the shallow water table for snapshots
in time; however, they provide no information about the evo-
lution of the shallow water table with time. To look at this
evolution along with changes in rainfall and runoff at the
hillslope, time series were created over the sampling period.
Low intensity storms were more frequent during the first half
of the study period (March through mid-May) while high
intensity storms occur in the second half (Fig. 3A). Peaks
in runoff coincided with the rainfall events with the large
rainfall events producing most runoff from the study site
(Fig. 3B). The two largest runoff events occurred on 26 May
and 27 July after periods of high antecedent rainfall (1-day
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Fig. 4. From the short time interval data, variations in(A) the range
[m], (B) runoff [m3/s], (C) percentage of the hillslope saturated [%],
and(D) average (black dots) STWI of the saturated area with bars
showing minimum and maximum STWI of the saturated area with
respect to the median depth to water table [cm] for the study site.

antecedent rainfall amounts greater than 1 cm in depth) and
coincide with large rainfall amounts (rainfall events greater
than 2 cm in depth). The median depth to water table fluc-
tuated quickly and rose in response to rain events for the
study site (Fig. 3C). The median water table was consistently
close to the ground surface during March through early June.
From mid-June through the end of August the median wa-
ter table was deeper with high fluctuations during rain events
(Fig. 3C). The water table and stream response to rainfall at
the study site was typical for this region (Mehta et al., 2004;
Agnew et al., 2006). High water tables near streams were
maintained in spring (March through May) by interflow from
either snowmelt or rainfall from upslope areas. The range pa-
rameter for the fitted exponential models was highly variable
in time (Fig. 3D). The minimum range was about 9 m and the
maximum 105 m.

From this time series, the importance the median water ta-
ble plays in the hydrology of the hillslope was investigated.
The ranges for the short time interval indicator semivari-
ograms decreased as the median water table rose (Fig. 4A).
This is due to transitioning from a smooth, continuous spa-
tial structure to one that is more discontinuous. This trend
changed when the median water table was about 10 cm deep.
After this point, as the median water table rose closer to the
soil surface the ranges began to increase. This increase in
range was due to the spatial structure of the wettest sampling
locations becoming more continuous over the field site. The
runoff increased, as expected, when the median water table
rose towards the soil surface (Fig. 4B). There was a large in-
crease in runoff observed when the median water table was
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Fig. 5. Semivariograms for study site using the probability of ex-
ceeding the time-variable threshold (median water level) at each
sampling location during the different months using long time in-
terval analysis. The symbols are the sample semivariogram and the
curves are the fitted exponential models.

closer to the soil surface than 10 cm. There was also an in-
crease in the saturated portion of the hillslope with decrease
in median depth to water table (Fig. 4C). For each 2-cm in-
crement in water table depth theSTWIvalues of all respec-
tive piezometers were grouped together and the mean, along
with maximum and minimum, were computed. The mean
STWIof all the saturated locations decreased as the median
water table rose towards the soil surface (Fig. 4D). Also, the
minimum STWI for all the sampling locations that saturate
tended to decrease as the water table rose to the soil surface
while the maximumSTWIfor all the sampling locations that
saturate tended to stay constant.

4.2 Long time interval

The semivariograms for the long time interval data all had
well defined sills and ranges (Fig. 5, Table 1). The nugget
values for all months were similar ranging from 0.036 in Au-
gust to 0.054 in March and April. Due to uncertainty as-
sociated with these nuggets, no further conclusions could
be drawn from the nugget values. Sills from the semivari-
ogram models corresponded to the average variance of the
actual water table measures, which is expected. The sills
varied from higher values during low median depth to wa-
ter tables (0.193 in April, and 0.194 in May) to lower values
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Table 1. Monthly characterization of the data set including median and variance of depth to water table, median and variance of frequency
exceeding threshold, average and maximum runoff, daily average and total rainfall, and semivariogram parameters for the exponential models
in Fig. 4 using the long time interval data for the study site.

Depth to Frequency Runoff Rainfall Semivariogram Parameters
water table exceeding threshold

Month Median Variance Median Variance Average Max Daily Average Total Nugget Sill Range
[cm] [cm2] [m3/s] [m3/s] [cm] [cm] [m]

March 16.60 91.7 0.089 0.140 0.047 0.20 0.69 15.2 0.054 0.173 12.0
April 13.05 110.2 0.162 0.174 0.031 0.29 0.65 19.6 0.054 0.193 17.3
May 15.75 118.5 0.123 0.165 0.025 0.87 0.54 16.7 0.048 0.194 20.9
June 31.85 71.9 0.082 0.066 0.033 0.22 0.30 9.1 0.049 0.147 73.8
July 35.25 53.5 0.028 0.024 0.011 0.83 0.59 18.3 0.039 0.135 144.4
August 16.51 90.6 0.106 0.092 0.002 0.01 0.10 2.3 0.036 0.161 29.0

Table 2. Summary of water table and rainfall for six dates used in IK analysis along with reduction in RMSE from cross validation with
jackknifing between IK with hard data alone and IK with soft data.

RMSE

Date Median depth 20th/80th percentile Variance of 1 day antecedent Reduction IK IKsoft
to water table depth to water table water table rainfall
[cm] [cm] [cm2] [cm] [%] [%] [%]

27 March 8.4 2.9/16.6 61.6 1.1 4.3 46.3 44.3
2 April 6.2 1.3/12.8 59.5 1.5 11.7 28.2 24.9
13 April 7.7 2.6/19.2 72.6 2.7 8.5 61.5 56.3
26 April 5.8 1.0/12.7 46.7 2.4 1.2 24.8 24.5
3 May 6.4 0.5/17.2 93.8 2.1 9.9 46.7 42.1
26 May 4.4 0.4/10.5 41.6 3.6 7.9 24.0 22.1

during high median depth to water tables (0.147 in June and
0.135 in July). The ranges for the exponential models were
longest in June and July at 73.8 and 144.4 m, respectively,
and shorter during months with low median depth to water
table. There was also noticeable difference in the relation
between probability of exceeding the threshold andSTWI
for the long time interval (Fig. 6). For March through May,
the linear regression between probability of exceeding the
threshold andSTWIhad relatively higher slopes and positive
intercepts compared to those for June through August.

The combined influence of long time interval and short
time interval information on the spatial structure of the shal-
low water table was demonstrated visually for six rainfall
events using kriging techniques (Fig. 7). These events were
selected because they produced the highest median water
tables for the period from March through May (i.e., when
there was a noticeable increase in probability with increase
in STWI) and characterized the hillslope response to rainfall
for wet conditions (Table 2). For the 27 March and 3 May
events, IK interpolations based on hard data alone showed
high probability of exceeding the median water table in the

near stream region. Also, there was a region of high proba-
bility extending up the hillslope. Within this upslope region,
there occurred discontinuous islands of higher probabilities
(Fig. 7). Incorporating soft data based on seasonal trends of
the water table into the IK interpolation reduced the occur-
rence of these isolated islands of high probabilities (Fig. 7).
For the events on 2, 13, 26 April and 26 May, IK interpo-
lations based on hard data alone gave relatively high prob-
ability of exceeding the threshold for the area closest to the
stream, but little high probability in the region further ups-
lope. Incorporating soft data, i.e.,STWI, the near stream re-
gion having high probability of exceeding the median water
table was larger. Also, the topographically converging region
upslope from the stream was predicted as having higher prob-
ability of exceeding the threshold when incorporating the soft
data than when using hard data alone.

The improvement in interpolation made by incorporating
soft data was evaluated by jackknifing to cross validate the
kriging interpolations. This method of cross validation tests
a kriging interpolation by dividing the original dataset to pro-
duce a testing and a training dataset. Randomly, 30% (14 of
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Fig. 6. Relationship between probability of exceeding the time-
variable threshold (median water level) and STWI for each month.
Points represent average probability of exceeding threshold and av-
erage STWI for each unit interval of STWI for the hillslope.

the 44 total) of the sampling locations were removed from the
original dataset to create a testing dataset leaving 70% (30 of
the 44 total) in a training dataset for analysis. To compare
the interpolation methods, root mean square error (RMSE)
was computed between the observed values in the testing
dataset and predicted values using both methods. From these,
the percentage reduction achieved by incorporating soft data
evaluated. For each event, IK incorporating soft data reduces
the RMSE for between the observed and predicted values
(Table 2). This reduction in RMSE reflects a better represen-
tation of observed depths to water table using IK with soft
data.

5 Discussion

Semivariograms based on the long time interval analysis
(Fig. 5) demonstrate the seasonal controls on hydrology for
this hillslope. There is a clear distinction between March
through May and June through July. During wet conditions
(i.e., March through May), shallow water tables in the con-
vergent zones lead to shorter ranges in the long time interval
semivariogram results. In drier conditions (i.e., June through
July), the spatial structure of the more often wet sampling lo-
cations becomes smooth and homogenous in space. This is

Fig. 7. IK with hard data alone and IK with soft data of study site
for (A) 27 March,(B) 2 April, (C) 13 April, (D) 26 April, (E) 3
May, and(F) 26 May rain events using indicator values from short
time interval for peak in rise of water table with 1 m contours as
white lines.

seen in the semivariograms as longer ranges and lower sills.
This is similar to the results of Western et al. (1998b) for
soil moisture distributions in the Tarrawarra watershed. Lo-
cations where the water table is likely to rise during rainfall
events have a shorter spatial structure during wet conditions
than during dry where they constitute a more highly contin-
uous spatial field behavior. Based on these semivariograms,
August, which traditionally is a dry month, is between wet
and dry conditions due to a large amount of rainfall occur-
ring in late July and early August resulting from residual
seasonal hurricane influence. This large amount of rainfall
leads to a rise in the median water table not typical for the
summer months. It is seen (Fig. 3C) that this high water ta-
ble in August is not sustained and falls rapidly in periods
of no rainfall. It lacks the snowmelt occurring from March
through May that sustains the median water table close to the
surface between rainfall events. The long-term analysis pro-
vides more information about prior conditions for the hills-
lope that describe the seasonal change in water table response
as we move from the wet period to the dry period.

The short-term analysis, on the other hand, provides a way
to describe changes in the spatial structure of the shallow
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water table in response to rainfall events for this study site
influenced by the antecedent conditions. During wet con-
ditions, the local water table is close to the soil surface be-
tween rainfall events and, when rainfall occurs, the median
water table raises producing surface saturation (Fig. 4C). Sat-
uration causes increased ranges in indictor semivariograms
(Fig. 4A). Since the expansion and contraction of saturated
regions occurs quickly, the longer ranges seen during rain
events in the short time interval analysis are not reflected
in the monthly, frequency-based analysis (Figs. 4A and 5).
Conversely, when there is a deep water table (i.e., high depth
to water table), the short time interval analysis shows a de-
crease in range with rising water table. Rain falling during
these deeper water table conditions permeates and runs lat-
erally as interflow along the restrictive layer down-slope to
accumulate in converging areas (Fig. 4D). Since the inter-
flow is channeled into these converging areas that are rela-
tively smaller than the total area and surface saturation tends
not to occur, the spatial structure of the wettest locations
becomes less homogeneous (discontinuous) compared with
that of uniformly dry conditions.

Previous work demonstrated the link between antecedent
conditions, in the form of pre-event depth to water table, and
probability of saturation at the sampling locations during wet
conditions (Lyon et al., 2006). The higher water tables are
prerequisite for the lateral expansion of large-scale saturated
source areas seen in the short time interval analysis. The
lateral extent of expansion is captured with the decreasing
minimum (and constant maximum)STWIfor these saturated
areas as the median water table approaches the soil surface
(Fig. 4D). Thus, saturation for this hillslope during wet con-
ditions starts at the highestSTWIvalues and spreads to loca-
tions of lowerSTWI. STWIvalues are highest at locations that
combine large upslope areas, low local slopes, and shallow
soils. Since these saturated regions expand along gradients
of decreasingSTWI, the indicator semivariograms exhibit in-
creased ranges for these rainfall events producing large, ex-
panding saturated areas. This reaction is common to water-
sheds where saturation excess overland flow is considered a
dominant pathway during wet season rain events (Western et
al., 2004). This lateral expansion of saturated areas has been
observed by other researchers in the Catskills due to accumu-
lation of interflow water in the form of increased soil mois-
ture at the hill bottoms relative to the steep parts of the hills
during wet periods (Frankenberger et al., 1999; Ogden and
Watts, 2000; Mehta et al., 2004). These studies observed lo-
cations where saturation commonly occurred are those where
(1) the soil above the low conductivity layer is shallow, (2)
the slope decreases downhill, such as the toe-slope of a hill,
or (3) in topographically converging areas. In this study, oc-
currences of exceeding the median water table, which my be
an adequate surrogate for saturation during high water table
conditions, were observed at all three locations.

Without additional information such as provided by envi-
ronmental traces it is not possible to discern the exact hy-

drological pathways. Still, identifying spatial patterns of sat-
uration is assumed to provide important information when
focusing on topics such as non-point source pollution con-
trol (Walter et al., 2005). Throughout the observation period,
increases in runoff, which were non-linear with respect to
the median depth to water table, were observed when there
were increased saturated areas (Fig. 4A). A possible interpre-
tation is that as surface saturation regions expand, more rain-
fall is directly contributing to stream flow as overland flow or
rapid subsurface flow. There seemed to be a threshold above
which the median water table must rise before “runoff” to
the stream increased dramatically (Fig. 4B). It is when the
median water table raises above this threshold that longer
ranges are observed in the indicator semivariograms due to
expansion of surface saturated areas. The identification of
these spatial patterns of saturation, which can be used to con-
trol where and when chemicals and nutrients are delivered,
can be an important hydrological component for non-point
source pollution control. Using kriging techniques (Fig. 7),
the semivariogram analysis used to investigate the spatial and
temporal evolution of the shallow water table can be further
employed to identify such physical patterns on the hillslope.

The use of geostatistical techniques, such as IK, is in-
fluenced by the number of sampling locations. Western et
al. (1998a) suggest that a large dataset is required to pro-
duce reliable results. For this study, since the water table
was below the extent of the sampling devices over parts of
the sampling period, traditional, measurement-based semi-
variogram analysis was not an option. By transforming mea-
sures into indicator values, water tables deeper than the sam-
pling devices could still be included in the analysis. The
limited number of sampling locations produced large fluctua-
tions in the indicator semivariogram ranges for the short time
interval analysis. This led to poor representations when krig-
ing. However, the length of the sampling period has allowed
for the use of soft data in combination with IK to create a
more robust interpolation of the observed data that incorpo-
rated different timescales. This compensated for sparse spa-
tial coverage and incorporated the seasonal variations in the
hydrology of the region into the dataset. TheSTWIused in
this study correlated well with probability of exceeding the
median water table during the wet period. This is similar to
results from wet periods for long-term modeling of this wa-
tershed (Agnew et al., 2006). When the median water table
is close to the soil surface, such as in periods of snowmelt,
the probability of exceeding the median water table coincides
to the probability of saturation. The influence of topography
during drier periods when the water table is not near the soil’s
surface, however, is not well established. For the wet period,
the soft data created with prior probability allowed for IK
that represented the physical process of the hillslope. This
smoothed the kriging and eliminated islands of high proba-
bility of exceeding the threshold. These isolated regions are
attributed to the sparse nature of the point observations and
position of sampling sites influencing the IK. Using soft data,
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the data are interpolated in a manner consistent with the un-
derlying hydrologic processes for the hillslope to represent
the influence of both event-based and seasonal trends.

By incorporating the soft data with the IK, the overall error
in interpolation for the data was reduced. This provided bet-
ter information about where on the hillslope hydrologically
active areas occur. These regions may be extremely impor-
tant in the development of nutrient management plans and in
control the transport of pollutants. Also, by developing soft
data based on readily available spatial data (i.e., DEM and
SURRGO), prior probabilities could be developed from other
analysis techniques if long time interval data such as those
used in this study are not available. Lyon et al. (2006) im-
proved interpolations by incorporating soft data into IK, but
these improvements were limited to locations where the pre-
event water table was known explicitly. Long-term modeling
studies, such as that of Agnew et al. (2006), can provide the
prior probability to create soft data for fortifying hard data
observations. Thus, fewer observations can be made without
compromising the robustness of the spatial data obtained. In
addition, these soft data, when occurring at longer temporal
scales, can provide information about seasonal variations in
spatial patterns that heavily influence hydrology. Data based
on interpolations of this style provide sources for validation
of long-term risk assessment models. They can also aid in
the development of appropriate techniques to better model
saturated area formation by spatially representing data about
water table response to rainfall events. Incorporation of soft
data leads to a more realistic representation of hillslope re-
action to rainfall events by including processes involved in
the formation of saturated areas. This style of geostatisti-
cal analysis gives a manner to organize and represent spatial
changes in the shallow ground water table. These changes
occur at different temporal scales that can be integrated to
better describe hillslope-scale hydrological processes.

6 Conclusions

Geostatistical methods were used to describe the spatial
structure of the shallow water table in the near stream region.
Using 44 sampling locations from a study site in the Town-
brook watershed in the Catskill Mountain region of New
York State, indicator methods have been used to explore vari-
ations in both short time intervals (15-min) and long time in-
tervals (months). These time intervals were able to describe
the event-based reaction of the shallow water table and the
seasonal trends influencing the hydrology of the hillslope.
The shallow water table for the study site shows two distinct
responses depending on the position of the median water ta-
ble. When the median water table was near to the soil surface
(wet conditions), rainfall cause extensive surface saturation
resulting in longer ranges in the indicator semivariograms.
This is caused by expansion of saturated areas in topograph-
ically converging zones. During dry periods with deep water

tables, interflow concentrates the water table response caus-
ing decreases in range compared to the homogeneity in spa-
tial structure prior to rainfall events. It was possible to visual-
ize these changes in spatial structure using kriging techniques
incorporating both the event-based and seasonal trends in the
shallow water table response. This provided more realistic
interpolations during high water table conditions by captur-
ing structure in the shallow water table not available when us-
ing hard data alone. This type of kriging analysis provides a
manner to locate physical patterns influencing the hydrology
of the study site that are useful for validation of hydrological
and contaminant transport modes. This study presents meth-
ods to characterize large amounts of point data temporally
and spatially that can emphasize the hillslope-scale hydro-
logical processes. By representing both spatial patterns and
temporal evolution in the shallow water table with geostatis-
tical analysis, saturated source areas active in controlling not
only VSA runoff but also other hydrological pathways can be
identified. Understanding this temporal evolution in the spa-
tial structure of the shallow water table is the “where” and
“when” of hydrology that is the groundwork for tasks such
as non-point source pollution control.
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