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Abstract. Fractal scaling behavior of long-term records of and prediction of characteristics and processes at a scale dif-
daily runoff time series in 31 sub-watersheds covering a wideferent from the one at which observations and measurements
range of size were examined using the shifted box-countingare made, remains a pervasive problem in many areas of sci-
method and Hurst rescaled range (R/S) analysis. These sulence and engineering including hydrological sciences (Spos-
watersheds were associated with four agricultural watershedgo, 1998). The National Research Council (1991) stated:
of different climate and topography. The results showed that'...the search for an invariance property across scales as a
the records of daily runoff rate exhibited scale invariancebasic hidden order in hydrologic phenomena, to guide devel-
over certain time scales. Two scaling ranges were identi-opment of specific models and new efforts in measurements
fied from the shifted box-counting plots with a break point is one of the main themes of hydrologic science”. Sposito
at about 9-12 months. Similar fractal dimensions were ob- (1998) reiterated: “...whether processes in the natural world
tained for the sub-watersheds within each watershed, indiare dependent or independent of the scale at which they op-
cating that the runoff of these sub-watersheds have similaerate is one of the major issues in hydrologic sciences”.
distribution of occurrence. The Hurst R/S analysis showed Parameters in runoff hydrological models are usually de-
that the long-term memory was not present in runoff time se-termined from monitoring data. However, stream networks
ries. The presence of scaling is not certain for runoff timein many watersheds in the USA are not gauged (or are par-
series in agricultural watersheds. tially gauged) and have no flow records, or the flow record
is often too short to obtain the required hydrological param-
eters. It would be very useful to find possible analytical tools
that would enable extrapolation of observations of runoff
processes in gauged watersheds or portions thereof, to pre-

Current public policies and legislative mandates are strongl)fj'Ct such processes in larger portions of the same watershed

committed to the long term sustainable development and us8' N Non-gauged watersheds (Bloschl and Sivapalan, 1995).

of the nation’s watersheds, in particular protecting the quan_Runof“f processes are the direct result of the interaction of the

tity and quality of associated runoff-generated surface Wa_spatial and temporal distribution of precipitation and water-

ter resources (USEPA, 1995). Hydrologists have developedn€d Physical characteristics such as topography and geol-
many mathematical models for predicting runoff in water- ogy. Therefore extrapolation between scales of observations

sheds. The development of most of these models has becf]!d Petween watersheds would require identifying and quan-

based on observations taken over relatively small spatial an§'Yind the scaling behavior of temporal and spatial water-

temporal scales. Since watersheds vary in their size, topogeh€d characteristics and processes. Such information could
sult in reducing the extent and degree of monitoring re-

raphy, land use pattern, hydrogeology, and drainage network®S LS o .
morphology, the usefulness of these models depend on ho\ﬂuwed by legislative mandates and lead to significant savings

well they can be extrapolated across spatial and tempordp cost anq time. )
scales. This scale transfer problem, meaning the description Ve Posit that fractal concepts and approaches provide the
wherewithal to resolve this issue. There is already a signifi-
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80 X. Zhou et al.: Runoff scaling in agricultural watersheds

modeling (Bloschl and Sivapalan, 1995; Rodriguez-lturbe The objective of present study was to investigate scale in-
and Rinaldo, 1997). Studies have shown that the scale invarivariance behavior of daily runoff rate time series for four
ance property is not only a feature of geometrical watershedgricultural watersheds and their 31 sub-watersheds. The
characteristics, but may also be an inherent characteristiscaling properties were examined by the fractal dimension
of hydrological dynamic processes (Schertzer and Lovejoyestimated using the shifted box-counting method and by
1987; Rodriguez-Iturbe and Rinaldo, 1997). Other reportsHurst exponents estimated using rescaled raRye) anal-
indicate that some hydrological processes (e.g., rainfall), aregsis.

spatially scale dependent processes (Gupta and Waymire,

1987). Scale invariant properties would be particularly use-

ful in agricultural watersheds with sparse gauge networks, o Data and methods

where time series of rainfall and runoff records are relatively2 1 Runoff data

short (Olsson et al., 1992). Different from geometric scal-

ing in classical geometrical objects, statistical scale invari—-l-he database developed by the Hydrological and Remote
ance has been found to be more general and useful in naturdlensing Laporatory of the Agricultural Research Service of
processes and phenomena, which lead to relationships cofge s pepartment of Agriculture (USDA/ARS/HRSL) was
nectmg_ statistical prope_rtles of the geometric feature and/pghe source of the hydrological data analyzed in this study.
dynamic processes at different scales. Mathematically, stalisy consisted primarily of rainfall/runoff data from the ARS
tical scale invariance manifests itself when the dependence gf,onitored experimental agricultural watersheds nationwide.
number of observations in the series greater than a specifiegpese watersheds represent numerous land uses and agricul-
value on the values themselves follows a power law. Stay, | practices and cover a diverse range of climatic condi-

tistical scale invariance is especially useful in the hydrologyinns across the U.S. About 16 600 station years of rainfall
context since hydrological processes are often characterizeg,q runoff were available in the database.
by some statistical properties. . Four agricultural watersheds were selected from the
Since the dgmonstrauon _Of the validity of fractal con- yatahase: (1) the Little River watershed, Southeast Water-
cepts to describe natural objects by Mandelbrot (1983), thgyneq Research Laboratory, Tifton, Georgia; (2) the Little Mill
generality of the fractal nature of watershed hydrological - eek watershed in the North Appalachian Experimental Wa-
characteristics and processes appears to be more and mqggspeqd, Coshocton, Ohio; (3) the Reynolds Creek watershed,
widely acknowledged. Early researches were mostly focuseq|q thwest Watershed Research Center, Boise, Idaho; and
on time series of rainfall records (Lovejoy and Sphertzer,(4) the Sleepers River watershed, Danville, Vermont. Sev-
1985; Olsson et al., 1992, 1993; Gupta and Waymire, 1993g5| tactors were taken into account in selecting watersheds
Menabde et al., 1997; Schmitt et al., 1998). These studiegy jnyestigation, including length and completeness of the

have indicated that rainfall might be characterized by Som&gcqrgs, watershed and sub-watershed sizes, and availability
time and/or space parameters, which are valid over a ranggs gther ancillary information. Some descriptions of these

of time and space scales. Not surprisingly, the results ol qied watersheds were listed in Table 1.

these early studies of rainfall series led naturally and 10gi- E5ch watershed selected contained a number of sub-
cally to speculation that similar fractal spatial and temporal, 5tarsheds and their properties are summarized in Table 2.
scaling characteristics exist for other watershed hydrologicaly iotal of 31 sub-watersheds was analyzed. These sub-
processes such as runoff and stream flows. Some recent rg; iarsheds covered a wide range of sizes from 0.0 km

ports have indicated that this is the case for regional ﬂ°°d(sub-watershed W-23 of the Reynolds Creek watershed) to
frequencies in large natural drainage networks (Radziejewng, 7 (sub-watershed W-TB of the Little River water-

ski and Kundzewicz, 1997; Robinson and Sivapalan, 1997gheq). Surface runoff in these sub-watersheds was measured

Pandey et al., 1998). A power law relationship was observed recorded at various intervals, from a few minutes to sev-

to hold between mean annual peak discharge per unit aregry| hours, In general, more frequent measurements were
and drainage area (Robinson and Sivapalan, 1997). Gupta &{ade during rain days. The runoff records within each day

al. (1996) argued that the hypothesis of self-similarity pre-\yere integrated to obtain daily runoff time series for further
sented a powerful unifying theoretical framework, which can analysis.

bridge statistical theory of regional flood frequency and im-

portant empirical features in watershed topographic, rainfall,2 2 Shifted box-counting analysis

and flood data sets. Radeziejewski and Kundzewicz (1997)

studied and identified the scale invariance of the daily riverThe records of a runoff time series can be regarded as a bi-
flow of the river Warta in Poland. They also combined sev- nary set of points, which is defined on some threshold value.
eral normalized flow series and evaluated the impact of suctZero is generally used as a default threshold value, though
combinations on the fractal dimension. More recently, theother values>0 can be also used. In this case, only the
scaling properties of runoff in karstic watersheds were alsoobservations with the value greater than the threshold are
investigated (Labat et al., 2002). considered as points of the derived set. In this study, four
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X. Zhou et al.: Runoff scaling in agricultural watersheds 81
Table 1. Description of four studied watersheds.
Watershed Area Elevation Mean Drainage Land use
precipitation density
(km?) (m) (mm) (km/kn?)
Little River Watershed, GA 334 82-148 1140 2.3 Agriculture and forestry are
dominant
Little Mill Creek Watershed, OH 19 248-393 1245 2.6 Forest (40%), Cropland
(25%), and Pasture (20%)
Reynolds Creek Watershed, ID 1101-2241 230 at lower elevation and 3.0 Livestock grazing with some
>1100 in higher regions irrigate fields along the creek
Sleepers River Watershed, VT 206-784 1100 3.3 Typical northern hardwood

forest with about one-third of
the watershed in pasture land
use for dairy farming

Table 2. Daily runoff records in agricultural watersheds and sub-watersheds studied.

Watershed Sub-watershed Area (:k)m Record period Daily mean runoff rate %VB)
W-TB 333.8 1 Nov 1971-30 Sep 2002 3.52
W-TF 114.8 1 Jan 1969-30 Sep 2002 1.33
Little River W-TI 49.9 1 Jan 1969-30 Sep 2002 0.67
Watershed, GA W-TJ 22.1 1 Jan 1969-30 Sep 2002 0.29
W-TK 16.7 1 Jan 1969-30 Sep 2002 0.21
W-TM 2.6 1 Jan 1969-31 Dec 1988 0.03
W-5 14 1 Oct 1938-1 Oct 1971 0.012
W-10 0.5 5 Oct 1938-1 Oct 1971 0.004
W-91 0.32 1 Oct 1938-1 Oct 1971 0.011
Little Mill Creek W-92 3.7 1 Oct 1938-1 Oct 1971 0.035
Watershed, OH W-94 6.2 1 Oct 1938-1 Oct 1971 0.059
W-95 11.1 1 Oct 1938-22 June 1972 0.098
W-97 18.5 1Jan 1937-1 Oct 1971 0.181
W-1 2335 1 Jan 1963-30 Sep 1996 0.56
W-2 36.4 29 Jan 1964-15 April 1994 0.082
W-3 31.8 13 March 1964-31 Dec 1990 0.072
W-4 54.4 29 March 1966-30 Sep 1996 0.42
Reynolds Creek W-11 1.2 1 Jan 1967-31 Dec 1977 0.0075
Watershed, ID W-13 0.4 1 Jan 1963-30 Sep 1996 0.0067
W-14 0.1 7 March 1966-17 April 1984 0.000041
W-16 14.1 1 Jan 1973-20 Dec 1980 0.13
W-23 0.01 15 Jan 1972-30 Sep 1996 0.0000057
W-1 42.9 23 Jan 1959-30 Dec 1973 0.67
W-2 0.6 1 Jan 1961-29 Nov 1971 0.0073
W-3 8.4 1 Jan 1960-2 Jan 1979 0.16
Sleepers River W-4 43.5 1 Jan 1960-30 Dec 1973 0.72
Watershed, VT W-5 111.2 1 Jan 1960-30 Dec 1973 1.97
W-7 21.8 1 Jan 1961-30 Dec 1972 0.34
W-8 15.6 1Jan 1961-15 May 1979 0.24
W-9 0.5 15 Sep 1961-10 July 1973 0.0076
W-11 23 1 May 1964-23 Nov 1972 0.026
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82 X. Zhou et al.: Runoff scaling in agricultural watersheds

threshold levels of the runoff rate (0, Qb, M, and 1.5V, the interval of the subset, amdienotes the starting point for
whereM is the average daily runoff rate) were used to definethe subset. The mean valug,,, of the time series(*(¢) is
the sets. The scaling property of the runoff data series waslefined as:
measured on the resulting sets by the shifted box-counting imian
method, which is an improvement proposed by Radziejewskiy, — ( Z Xi)/n (3
and Kundzewicz (1997) on the conventional box-counting izl
method.

In this method, a uniform one-dimensional grid of box
size ¢ was superimposed onto the time domain on which

The standard deviation of the subset fro#il to timez-+n,
S,, is estimated as:

the series is defined. The number of non-overlapping grid n
segments (boxes) needed to cover the whole series to bg, — ,1/2 « Z (X, — Xpm)2 (4)
analyzed was counted. Only those boxes that contained at e+l

least one element that was above the threshold value were _ _ )
counted. The grid position was then shifted in time different 1 he rescaled range is calculated by first rescaling the subset

units, from 1 tos—1. The number of boxedl(s), contain- ~ data by subtracting the sample mearkGi) as:
ing elements qf the set of interest for all possible shifts were; _ (X, — X,n) F=t+1 ..14n (5)
counted, and finally the counts were averaged.
Different box sizes were used to cover the sets. The mini-And the cumulative time serieg, is created by:
mum box size ) used was one day, and then the size was

doubled (e, 2, 4, 8, ...), until the maximum size (1/5 +1 =21 r=i+1 ©)
of the data length) was reached. For sufficiently small y _ (y. .1 7) r=¢r+2 .. t+n )
N(s)ox(L/e). The relationship oN(e) versuss was fitted to a
power law function: The adjusted rangek,,, is the accumulative departure from
N(e) = C D 1) the mean, i.e. the maximum minus the minimum valu&,of
£) = &
) . Rn = maX(Y[-i-lv s Yf+n) - mln(Y[+1, sy Yt+n) (8)
whereC and D are constant values. The fractal dimension,
D). was calculated as: For the interval starting at time of width », R and S are
(D),
computed. This is repeated for each successiventil ¢
D= gliLnOGOgN(&) —logc)/(log(1/e)) (2)  reachesV—n+1. The procedures are repeated for the next

lag timen, until all selected lags have been tested. A general
In applying this method lod(¢) was plotted versus log {d), form of the relationship oR/S to n (Hurst, 1951):
and D was estimated from the graph as the slope of the

H
straight line best fitted to the points. (R/S)n =cxn ©)

2.3 Rescaled range (R/S) analysis A log transformation of Eq. (9) gives
log(R/S) = H logn + logc (10)

Hurst (1951) studied the 847-year record of the overflows of

the Nile River, and found that successive observations in thd=xponentH is estimated from the graph as the slope of the

series above or below the mean value tended to persist. Hetraight line best fitted to the points. The small lags only

termed this tendency “long-term persistence” or “long-term represent short-term memory, thus should not be used to es-

memory”. Hurst's subsequent investigations showed that thidimate # values (Taqqu et al., 1995). It should be noted that

phenomenon was characteristic of the overflow, water storH>0.5 may be obtained from R/S method even when a long-

age, and stream flow of many other rivers. While other meth-term memory is not present in a time series (Tagqu et al.,

ods have also been proposed (Montanari et al., 1997; Hu et995; Montanari, 2003).

al., 2001; Markovic and Koch, 2005), detecting such per- The empirically defined Hurst exponent is related to the

sistence phenomena in hydrological series is classically obtheoretical fractal dimensiop of the graph of a correspond-

tained by the adjusted rescaled rangg §) analysis (Man-  Ing time series, as:

delbrot and Wallis, 1969; Peters, 1994; Zhou et al., 2005),,, _ , _ y (11)

This analysis involves a statistical rescaling of the original

series over lag times of varying widths. The procedures ofThe scaling analysis on long-term persistence is influenced

R/S analysis used are described in detail as follows: by the inherent deterministic component (trends and period-
Let X (r) be a time series of recorded runoff containing icities) of the time series, which is particular true for hy-
N readings fromr=1tor=N. Let X*(£)=X;+1, - -+ X+n, drological or meteorological time series (Hu et al., 2001;

represent consecutive observation values within a subset dfallache et al., 2005). It has been suggested that the deter-
the record fromr + 1 to timet+n. The lag time n denotes ministic components should be separated from its stochastic
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Fig. 1. Log-log plots of number of boxed\[e)] versus box sizes Fig. 2. Shifted box counting graph as in Fig. 1 but with one day in-
for different threshold values (0, 1.76, 3.52, and 5.?&)1using crement of box sizes{ for sub-watershed W-TB of the Litter River
the shifted box counting method to analyze the runoff rate seriesvatershed in Tifton, Georgia. The break point of the slope occurs
for sub-watershed W-TB of the Litter River watershed in Tifton, at approximately=365 days.

Georgia. In all cases;2 was >0.99 for the straight lines fitted to

the sections of the graph. Box sizes were exponentially doubled

starting a=1 day. (time scales) were between one day and 1/5 of the length

of the records. If the runoff time series possessed a scale-

components prior to drawing a conclusion on the time Se_invarir.;mce property, a strgight Iine.could be fitted to the box-
ries scaling structure (Klemes, 1974; Montanari et al., 1997;counting graph or part of it, according to the Eq. (2). Figure 1
Radziejewski and Kundzewicz, 1997; Markovic and Koch, shows that for each threshold, two distinct scaling ranges are
2005). Many approaches have been proposed to distinguisﬁppafe”ta each of which can.be fitted with a straight—l_ine sec-
the deterministic components and long-range component0n by least square regression, instead of a single linear re-
(Taqqu et al., 1995; Montanari et al., 1999; Maraun et al.,/ationship over the entire range of time scales.
2004). The existence of linear relationship over certain time

The daily runoff time series were transformed as follows scales indicates that there is a scale invariant distribution of
to obtain a process without seasonality (time series with zergunoff in time, which is valid within the defined linear scaling
mean and unit standard deviation): (1) logarithms of datarange. By using fractal concepts, temporal scale invariance
series, (2) subtracted seasonal mean values of the time sef runoff might be characterized by a single parameter, frac-
ries, and (3) divided by seasonal standard deviations of théal dimension D). Since twoD values were obtained from
time series. The shifted box-counting method and R/S analthe box-counting analysis for the time series in Fig. 1 over
ysis were also applied on these transformed time series tthe time period under consideration, it implies that its scal-
investigate the seasonal effects on scaling characterization iimg properties vary with the time scales.
agricultural watersheds. Likewise, the runoff time series of other five sub-
watersheds in the Little River watershed as well as all the
sub-watersheds in the other watersheds studied (Little Mill
Creek watershed, Reynolds Creek watershed, and Sleepers
River watershed) all displayed two scaling ranges for each
threshold in their box-counting graphs. The break point [in-
An example of the shifted box-counting graph ) ver- tersection of the two straight line sections in the M(g) ver-
sus loge for the runoff time series in sub-watershed W-TB Sus loge plots] for all thresholds corresponded to the same
of the Little River watershed is displayed in Fig. 1. The Pox size, which indicates the same scaling ranges are valid
mean daily runoff rate in this example was 3.52sn! (Ta- no matter what runoff intensity threshold was used to define
ble 2). Since lodN(e) versus log was plotted instead of log  the set.
N(e) versus log (%), the value of the negative slope repre- To further precisely locate the break point, the box-
sents the estimated fractal dimension of the sets. It should beounting technique was applied with one-day increment of
noted that the fractal dimensions were estimated for some bibox size (Fig. 2) instead of the exponential doubling incre-
nary sets derived from the runoff series based on the chosements used for Fig. 1. In Fig. 2, the break point was found to
threshold values, not the runoff series itself. The box sizescorrespond to a box size of approximately 365 days. This

3 Results and discussion

3.1 Estimated fractal dimension

www.copernicus.org/EGU/hess/hess/10/79/ Hydrology and Earth System Sciences 9102096
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Table 3. Fractal dimensions (D) of daily runoff rate for six sub-watersheds of the Little River watershed in Tifton, Georgia. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold¥w1) D r2  Threshold D 2

0 0.96 0.999 -1 0.95 0.999

1.76 0.81 0998 -0.5 0.93 0.999
W-TB 3.52 0.76  0.997 0 0.89 0.999
5.28 0.71 0.994 0.5 0.81 0.999

1 0.65 0.999

0 0.94 0.999 -1 0.96 0.999

0.66 0.83 0998 -05 0.92 0.999
W-TF 1.33 0.77 0.995 0 0.89 0.999
2.00 0.71 0.991 0.5 0.81 0.999

1 0.64 0.999

0 0.93 0.999 -1 0.96 0.999

0.33 0.83 0997 -05 0.91 0.999
W-TI 0.67 0.77 0.995 0 0.89 0.999
1.00 0.70 0.991 0.5 0.81 0.999

1 0.65 0.999

0 0.92 0.999 -1 0.98 0.999

0.15 0.81 0996 -05 0.89 0.999
W-TJ 0.30 0.74 0.994 0 0.88 0.999
0.45 0.68 0.990 0.5 0.81 0.999

1 0.68 0.997

0 0.92 0.999 -1 0.97 0.999

0.10 0.84 0997 -05 0.92 0.999
W-TK 0.20 0.79 0.996 0 0.89 0.999
0.30 0.73 0.994 0.5 0.81 0.999

1 0.66 0.999

0 0.96 0.999 -1 0.96 0.999

0.015 0.83 0.998 -0.5 0.95 0.999
W-TM 0.030 0.76 0.996 0 0.90 0.999
0.045 0.69 0.991 0.5 0.80 0.999

1 0.63 0.993

may be explained by the obvious annual cycle of all the(3.52n? s for original time series, and 0 for transformed
runoff time series. It has been suggested that the seasontime series), D increased from 0.76 (original) to 0.89 (desea-
cycles should be removed from the original data prior tosonalized). The fractal dimensions in scaling range of large
drawing conclusions on time series scaling structure (Mon-box sizes were approximately equal to 1.0, and not sensitive
tanari et al., 1997; Markovic and Koch, 2005). The shifted to threshold values.

box-counting method was also used to estimate the fractal The fact that two scaling ranges were apparent would in-
dimensions of the deseasonalized time series, which havdicate that the scaling characteristics of the short-term pro-
zero mean and unity standard deviation. Five threshold valcess &1 year) and long-term process 1 year) of water-
ues (1, -0.5, 0, 0.5, and 1) were used to derive the binaryshed runoff were different. Breakpoints in scaling ranges
sets. The results showed that two scaling ranges were alsfor watershed runoff were also found in other studies us-
observed for the deseasonalized runoff series and the breakg the shifted box-counting analysis. In their investigation
point again occurred at about42 months (Fig. 3), although of daily flows of the river Warta in Poland, Radziejewski
fractal dimensions changed in scaling range of small boxand Kundzewicz (1997) reported a distinct break point in
sizes (Table 3). For example, at the threshold of data meathe scaling ranges at approximately 2—-4 years. They also

Hydrology and Earth System Sciences, 10,9%9-2006 www.copernicus.org/EGU/hess/hess/10/79/
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Table 4. Fractal dimensions (D) of daily runoff rate for seven sub-watersheds of the Little Mill Creek watershed in Coshocton, Ohio. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold¥w1) D r2  Threshold D 2

0 1.00 0.999 -1 0.96 0.999

W-5 0.006 0.83 0995 -05 0.91 0.999
0.012 0.75 0.991 0 0.83 0.999
0.018 0.69 0.986 0.5 0.71 0.997

1 0.56 0.994

0 0.99 0.999 -1 0.97 0.999

W-10 0.002 0.79 0995 -05 0.94 0.999
0.004 0.71 0.990 0 0.87 0.999
0.006 0.63 0.983 0.5 0.75 0.994

1 0.57 0.984

0 1.01 0.999 -1 0.97 0.999

W-91 0.0057 0.82 0996 -05 0.93 0.999
0.011 0.75 0.991 0 0.85 0.998
0.172 0.67 0.985 0.5 0.75 0.996

1 0.60 0.990

0 0.99 0.999 -1 0.96 0.999

W-92 0.018 0.82 0999 -0.5 0.93 0.999
0.036 0.74 0.999 0 0.86 0.999
0.054 0.66 0.998 0.5 0.75 0.995

1 0.59 0.988

0 1.00 0.999 -1 0.96 0.999

W-94 0.03 0.82 0996 -0.5 0.93 0.999
0.06 0.73 0.991 0 0.86 0.999
0.09 0.66 0.985 0.5 0.75 0.996

1 0.60 0.990

0 0.99 0.999 -1 0.97 0.999

W-95 0.049 0.82 0.997 -0.5 0.93 0.999
0.098 0.73 0.993 0 0.86 0.998
0.147 0.67 0.989 0.5 0.75 0.994

1 0.58 0.988

0 1.00 0.999 -1 0.96 0.999

W-97 0.09 0.82 0997 -05 0.92 0.999
0.18 0.73 0.993 0 0.85 0.998
0.27 0.64 0.987 0.5 0.74 0.994

1 0.60 0.990

detected another less distinct break point located at 10-1%ange 1, for examplep decreases from 0.96 at Gt
days. to 0.71 at 5.28 rhs ™! for the original runoff time series of

. . . . . . sub-watershed W-TB (Table 3). However, the fractal dimen-
Estimated fractal dimensions in the scaling region less .
sions at range 2 show almost no change for various thresh-

than 1 year are summarized in Table 3 through 6 for eachOlds with D=1.0 (Figs. 1 and 3). The dependence of the es-
of the four watersheds. If we term the scaling range of box

size less than 1 vear as range 1, and as 2 otherwise, tht|mated fractal dimension on the defined threshold value was
y 9 also observed in previous studies (Olsson et al., 1992, 1993;

fractal dimension in range 1 decreases as the threshold Irhadmejewskl and Kundzewicz, 1997). In all of these studies,
creases for both the original and deseasonalized series.
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Table 5. Fractal dimensions (D) of daily runoff rate for nine sub-watersheds of the Reynolds Creek watershed in Boise, ldaho. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed  Threshold ¢ 1) D r2  Threshold D r2

0 1.00 0.999 -1 0.97 0.999

W-1 0.28 0.82 0.997 -0.5 0.93 0.999
0.56 0.77 0.996 0 0.88 0.999
0.84 0.72 0.994 0.5 0.81 0.999

1 0.67 0.999

0 1.00 0.999 -1 0.98 0.999

W-2 0.041 0.85 0.998 -05 0.95 0.999
0.082 0.76 0.996 0 0.89 0.999

0.5 0.79 0.999

0.123 0.70 0.994 1 0.63 0.997

0 1.00 0.999 -1 0.97 0.999

W-3 0.036 0.81 0998 -0.5 0.93 0.999
0.072 0.74 0.996 0 0.88 0.999
0.108 0.68 0.995 0.5 0.80 0.999

1 0.63 0.999

0 1.00 0.999 -1 0.98 0.999

W-4 0.21 0.82 0997 -05 0.94 0.999
0.42 0.75 0.996 0 0.89 0.999
0.63 0.72 0.994 0.5 0.81 0.998

1 0.65 0.995

0 0.98 0.999 -1 0.98 0.999

W-11 0.0038 0.84 0998 -0.5 0.92 0.999
0.0075 0.77 0.998 0 0.88 0.999
0.0113 0.72 0.997 0.5 0.79 0.998

1 0.64 0.999

0 1.00 0.999 -1 0.97 0.999

W-13 0.0034 0.76 0993 -0.5 0.93 0.999
0.0067 0.80 0.990 0 0.86 0.999
0.0100 0.79 0.989 0.5 0.75 0.999

1 0.60 0.997

0 0.72 0.994 -1 1.00 0.999

W-14 0.00002 0.67 0995 -0.5 0.98 0.999
0.00004 0.65 0.995 0 0.72 0.990
0.00006 0.63 0.993 0.5 0.64 0.999

1 0.56 0.999

0 1.00 0.999 -1 0.97 0.999

W-16 0.065 084 0999 -05 0.94 0.999
0.130 0.77 0.998 0 0.90 0.999
0.195 0.74 0.996 0.5 0.78 0.997

1 0.62 0.997

0 0.41 0.976 -1 1.0 0.999

W-23 0.00000028 041 0976 -05 1.0 0.999
0.00000057 0.41 0.976 0 0.92 0.998
0.00000084 0.41 0.977 0.5 0.88 0.999

1 0.43 0.996
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Table 6. Fractal dimensions (D) of daily runoff rate for nine sub-watersheds of the Sleepers Creek watershed in Vermont. Fractal dimensions
correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold¥w1) D r2  Threshold D 2

0 1.00 0.999 -1 0.97 0.999

W-1 0.34 0.86 0997 -05 0.90 0.999
0.67 0.73 0.991 0 0.81 0.998
1.00 0.67 0.987 0.5 0.70 0.997

1 0.56 0.994

0 1.00 0.999 -1 0.97 0.999

W-2 0.0036 0.88 0.997 -0.5 0.90 0.999
0.0072 0.76 0.995 0 0.81 0.999
0.0108 0.65 0.986 0.5 0.70 0.994

1 0.56 0.984

0 1.00 0.999 -1 0.99 0.999

W-3 0.08 0.88 0.998 -0.5 0.99 0.999
0.16 0.74 0.992 0 0.97 0.999
0.24 0.65 0.987 0.5 0.64 0.984

1 0.24 0.968

0 1.00 0.999 -1 0.97 0.999

W-4 0.36 0.87 0.997 -0.5 0.91 0.999
0.72 0.74 0.992 0 0.81 0.998
1.08 0.67 0.991 0.5 0.70 0.997

1 0.57 0.996

0 1.00 0.999 -1 0.97 0.999

W-5 0.98 0.87 0997 -0.5 0.90 0.999
1.97 0.75 0.992 0 0.82 0.999
2.95 0.67 0.989 0.5 0.70 0.997

1 0.58 0.994

0 1.00 0.999 -1 0.99 0.999

W-7 0.17 0.86 0.997 -0.5 0.98 0.999
0.34 0.73 0.994 0 0.93 0.999
0.51 0.67 0.989 0.5 0.63 0.994

1 0.38 0.998

0 1.00 0.999 -1 0.99 0.999

W-8 0.12 0.84 0999 -0.5 0.99 0.999
0.24 0.73 0.994 0 0.98 0.999
0.36 0.66 0.989 0.5 0.57 0.995

1 0.15 0.958

0 0.98 0.999 -1 0.96 0.999

W-9 0.0038 0.83 0.998 -0.5 0.92 0.999
0.0076 0.73 0.995 0 0.87 0.999
0.0114 0.66 0.994 0.5 0.79 0.998

1 0.56 0.994

0 0.99 0.999 -1 0.99 0.999

W-11 0.013 0.85 0.999 -0.5 0.99 0.999
0.026 0.77 0.995 0 0.96 0.999
0.039 0.69 0.992 0.5 0.76 0.997

1 0.42 0.993
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10000 The results presented in Tables 3 through 6, and the log
Threshold N(e) versus logs box-counting plots for the runoff time se-
S s ries were quite consistent across the sub-watersheds of the
o 0 four watersheds. With the exception of the two smallest
- sub-watersheds (W-14 and W-23 of the Reynolds Creek wa-
tershed), the same fractal dimension (estimated using the
shifted box-counting method) was obtained for the runoff se-
ries at each threshold level although these watersheds varied
° markedly in climate, topography, and size (Table 2). For ex-
1 8 ample, for a given threshold level, say level 2, the fractal di-
° mension is about 0.85 for practically all the runoff time series
in four watersheds (Tables 2 to 5). In other words, runoff time
j 10 100 1000 10000 series in these watersheds and their sub-watersheds have sim-
ilar distribution of occurrence of runoff, and exhibit the same
pattern of scaling, although they have different climates, ge-
Fig. 3. Log-log plots of number of boxes [N)] versus box size  0graphy, soil type, land management, etc.
() for different threshold values<1, —0.5, 0, 0.5, 1) using the It should be pointed out that the threshold values used to
shifted box counting method to analyze the deseasonalized runoftlefine the binary sets from the original runoff series were
rate series for sub-watershed W-TB of the Litter River watershed indifferent for time series because the mean daily runoff rates
Tifton, Georgia. of the sub-watersheds were different (Table 2). Selecting
threshold values based on mean daily runoff rates allows

) ) ) . comparison of the fractal dimensions estimated from differ-
a fractal dimension of 1.0 was obtained when the time scalg,¢ noff time series. The results indicated that although

exceeded a certain value, which was about 365 days in thige qaily runoff rates were different by orders of magnitude
study. . L Barl (Table 2), the occurrence of runoff had the same distribution.
For the original runoff series in this study, for the O The transformed series have zero mean and unity standard
threshold,D appropriates or equals to 1.0 for all the runoff deviation, therefore the same threshold values, (0.5, 0,
series (Tables-36). This might be because the observations; g 4q 1) were used for all the time series.
of daily runoff intensity are nearly all greater than 0, there- st threshold level 4, the fractal dimensions of runoff time
fore, the generated set is almost continuous with few gapgeries for the Little Mill Creek and Sleepers River water-
(no runoff) between them. As a result, a smaller dimensiongpeqs \ere slightly less than that for the Little River and
was obtained from the box-counting plot. In scaling range 2peynoids Creek watersheds. A lower dimension means that
where the box sizes are greater than one year the fractal dis,ore noints are clustered in groups over time scales. Thus it
mension is equal to 1.0 at all the threshold levels (Fig. 1).iygjcated that high runoff occurrences are more clustered in

This might be because there would always have at least ong,q | jttie Mill Creek and Sleepers River watersheds than the
day of a year that the runoff rate exceeded the thresholq)thertWO watersheds.

value. The regression coefficients of regression lines in the a¢ yiscussed above, the occurrence of runoff in agricul-
Iog_N(e) VErsus loge plots were high for all the runoff.tlm.e _tural sub-watersheds of various sizes had similar distribu-
series with values greater than or close to 0.990, which indixjon ' making it possible to extrapolate runoff behavior over a
cates a strong linear relation. These consistently high Valueﬁairly large range of spatial scales within a watershed. How-
are considered requisite to provide confidence in any i”fer'ever, this scaling property may not be valid when the sub-
ence that the runoff series under investigation demonstralgatersheds are small. The box dimension of the runoff series
scale Invariant characteristics. . ) for the two smallest sub-watersheds (W-14=0.0% kimd W-
Table 3 indicates that the fractal dimensions for all the 653_g 1 kn?) of the Reynolds Creek watershed, were much
sub-watersheds of the Little River watershed at each leve|,ar and did not change at different threshold levels (Ta-
of the threshold were almost the same, although the conge 5y |t indicated that the distribution of runoff occurrence
tribution areas of these sub-watersheds are quite differenf, oyiremely small sub-watersheds might be different from
(2.6~333.8 l,«ﬁ fo_r sub-watersheds of the Little River wa- larger watersheds, and extrapolation might not be feasible at
tershed as listed in Table 2). The sub-watersheds of the Litig|atively small scales. One possible explanation might be
tle River watershed as an example, iievalue of original - 4t the total volume of surface runoff from a very small sub-
runoff series ranged from 0.92 to 0.96 for threshold level 1,,4ershed is limited, and measured runoff tends to be almost
0.81 10 0.83 for level 2, 0.74 to 0.79 for level 3, and 0.68 10 ;¢4 4t most of the time depending on the sensitivity and res-
0.71 for level 4 (Table 3). The same pattern was found in allgtion of the measuring instruments. On the other hand, for
the other three watersheds (Tables 3 through 5). the runoff series investigated in this study, no upper restric-
tion of sub-watershed size in scaling was detected.
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Fig. 5. Hurst rescaled range analysis plot for deseasonalized daily
Fig. 4. Hurst rescaled range analysis plot for daily runoff time se- runoff time series of sub-watershed W-TB of the Little River wa-
ries of sub-watershed W-TB of the Little River watershed in Tifton, tershed in Tifton, Georgia. A straight line was fitted to the large

Georgia. A straight line was fitted to the large lags. lags.

3.2 Estimated Hurst exponent than 0.5 at large lags with typical value around 0.7, which
indicates a long-term memory (Table 7). H values in the
The Hurst exponentH) as a useful parameter to describe Reynolds Creek watershed and Sleepers River watershed are
long-term persistence of observations in hydrological timegreater than those in the Little River watershed and Little
series was initially applied in an empirical manner to water Mill Creek watershed (Table 7). This is unexpected since
reservoir design (Hurst, 1951). It was later established thatong-term memory will not be removed by superimposing a
the Hurst exponent could be theoretically related to the fraceriodic component. A satisfactory explanation of such un-
tal dimension for idealized time series that can be modeledisual behavior in this study is not found. It should be noted
as fractional Brownian motions. Figure 4 shows an examplethat the runoff time series of these agricultural watersheds
of the rescaled range plot used to obtain the Hurst exponerare quite short, especially for the Sleepers River watershed
of the original runoff time series for sub-watershed W-TB in and Reynolds Creek watershed (Table 2), therefore the esti-
the Little River watershed. In the plot, two distinct scaling mation of long-term memory based on R/S plots might not
ranges are clearly displayed. H values should be estimatebe reliable.
from the large lags in R/S plots since the small lags only
represent short-term memory (Taqqu and Teveroski, 1995;
Montanari et al., 2003). A straight line was fitted to the scal-4 Conclusions
ing range by least square regression. Fhealues of each
runoff time series are presented in Table 7. The scaling property of daily runoff for 31 sub-watersheds
Generally,H values of most runoff time series are around covering a wide range of sizes in four agricultural watersheds
0.50 (Table 7) indicating a random process (Mandelbrot andf different climate and topography was examined using the
Wallis, 1969). Little River Watershed as an examgfeyal- shifted box-counting method and Hurst rescaled range anal-
ues range from 0.46 to 0.51 for sub-watersheds. For the/sis. The same analyses were also applied to the deseason-
Sleepers River sub-watershed group, th@alues are much alized runoff time series. The results from fractal dimension
less than 0.50 (Table 7). A Hurst exponentk0.5 char-  estimation showed that long-term records of daily runoff rate
acterizes an unstable phenomenon, and it is unusual in naexhibited scale invariance over certain time scales. Two scal-
ural hydrological system (Beran, 1994). Most of river flows ing ranges were identified in the shifted box-counting plots
possess af/ value around 0.7 (Hurst, 1951). The seasonalwith a break point at about-912 months. The same frac-
cycle was removed from the original time series for R/S anal-tal dimensions were obtained for the sub-watersheds within
ysis. Figure 5 shows the R/S plot for W-TB sub-watershedeach watershed, indicating that the runoff of these sub-
of the Little River watershed after deseasonalization. Thewatersheds have similar distribution of occurrence and scal-
H values surprisingly increase for deseasonalized runoff seing behavior. However, the Hurst analysis showed that the
ries compared td{ values of the original series (Fig. 4 and daily runoff time series are lack of long-term memory, and
Table 7). Different from the original time series, the de- therefore lack of scaling, although they showed short-term
seasonalized runoff time series haevalues much greater memory. The presence of scaling is not certain for runoff
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