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Abstract. Fractal scaling behavior of long-term records of
daily runoff time series in 31 sub-watersheds covering a wide
range of size were examined using the shifted box-counting
method and Hurst rescaled range (R/S) analysis. These sub-
watersheds were associated with four agricultural watersheds
of different climate and topography. The results showed that
the records of daily runoff rate exhibited scale invariance
over certain time scales. Two scaling ranges were identi-
fied from the shifted box-counting plots with a break point
at about 9∼12 months. Similar fractal dimensions were ob-
tained for the sub-watersheds within each watershed, indi-
cating that the runoff of these sub-watersheds have similar
distribution of occurrence. The Hurst R/S analysis showed
that the long-term memory was not present in runoff time se-
ries. The presence of scaling is not certain for runoff time
series in agricultural watersheds.

1 Introduction

Current public policies and legislative mandates are strongly
committed to the long term sustainable development and use
of the nation’s watersheds, in particular protecting the quan-
tity and quality of associated runoff-generated surface wa-
ter resources (USEPA, 1995). Hydrologists have developed
many mathematical models for predicting runoff in water-
sheds. The development of most of these models has been
based on observations taken over relatively small spatial and
temporal scales. Since watersheds vary in their size, topog-
raphy, land use pattern, hydrogeology, and drainage network
morphology, the usefulness of these models depend on how
well they can be extrapolated across spatial and temporal
scales. This scale transfer problem, meaning the description
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and prediction of characteristics and processes at a scale dif-
ferent from the one at which observations and measurements
are made, remains a pervasive problem in many areas of sci-
ence and engineering including hydrological sciences (Spos-
ito, 1998). The National Research Council (1991) stated:
“. . . the search for an invariance property across scales as a
basic hidden order in hydrologic phenomena, to guide devel-
opment of specific models and new efforts in measurements
is one of the main themes of hydrologic science”. Sposito
(1998) reiterated: “. . . whether processes in the natural world
are dependent or independent of the scale at which they op-
erate is one of the major issues in hydrologic sciences”.

Parameters in runoff hydrological models are usually de-
termined from monitoring data. However, stream networks
in many watersheds in the USA are not gauged (or are par-
tially gauged) and have no flow records, or the flow record
is often too short to obtain the required hydrological param-
eters. It would be very useful to find possible analytical tools
that would enable extrapolation of observations of runoff
processes in gauged watersheds or portions thereof, to pre-
dict such processes in larger portions of the same watershed
or in non-gauged watersheds (Bloschl and Sivapalan, 1995).
Runoff processes are the direct result of the interaction of the
spatial and temporal distribution of precipitation and water-
shed physical characteristics such as topography and geol-
ogy. Therefore extrapolation between scales of observations
and between watersheds would require identifying and quan-
tifying the scaling behavior of temporal and spatial water-
shed characteristics and processes. Such information could
result in reducing the extent and degree of monitoring re-
quired by legislative mandates and lead to significant savings
in cost and time.

We posit that fractal concepts and approaches provide the
wherewithal to resolve this issue. There is already a signifi-
cant body of evidence indicating that hydrological scaling or
scale invariance can be successfully applied in hydrological
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modeling (Bloschl and Sivapalan, 1995; Rodriguez-Iturbe
and Rinaldo, 1997). Studies have shown that the scale invari-
ance property is not only a feature of geometrical watershed
characteristics, but may also be an inherent characteristic
of hydrological dynamic processes (Schertzer and Lovejoy,
1987; Rodriguez-Iturbe and Rinaldo, 1997). Other reports
indicate that some hydrological processes (e.g., rainfall), are
spatially scale dependent processes (Gupta and Waymire,
1987). Scale invariant properties would be particularly use-
ful in agricultural watersheds with sparse gauge networks, or
where time series of rainfall and runoff records are relatively
short (Olsson et al., 1992). Different from geometric scal-
ing in classical geometrical objects, statistical scale invari-
ance has been found to be more general and useful in natural
processes and phenomena, which lead to relationships con-
necting statistical properties of the geometric feature and/or
dynamic processes at different scales. Mathematically, statis-
tical scale invariance manifests itself when the dependence of
number of observations in the series greater than a specified
value on the values themselves follows a power law. Sta-
tistical scale invariance is especially useful in the hydrology
context since hydrological processes are often characterized
by some statistical properties.

Since the demonstration of the validity of fractal con-
cepts to describe natural objects by Mandelbrot (1983), the
generality of the fractal nature of watershed hydrological
characteristics and processes appears to be more and more
widely acknowledged. Early researches were mostly focused
on time series of rainfall records (Lovejoy and Schertzer,
1985; Olsson et al., 1992, 1993; Gupta and Waymire, 1993;
Menabde et al., 1997; Schmitt et al., 1998). These studies
have indicated that rainfall might be characterized by some
time and/or space parameters, which are valid over a range
of time and space scales. Not surprisingly, the results of
these early studies of rainfall series led naturally and logi-
cally to speculation that similar fractal spatial and temporal
scaling characteristics exist for other watershed hydrological
processes such as runoff and stream flows. Some recent re-
ports have indicated that this is the case for regional flood
frequencies in large natural drainage networks (Radziejew-
ski and Kundzewicz, 1997; Robinson and Sivapalan, 1997;
Pandey et al., 1998). A power law relationship was observed
to hold between mean annual peak discharge per unit area
and drainage area (Robinson and Sivapalan, 1997). Gupta et
al. (1996) argued that the hypothesis of self-similarity pre-
sented a powerful unifying theoretical framework, which can
bridge statistical theory of regional flood frequency and im-
portant empirical features in watershed topographic, rainfall,
and flood data sets. Radeziejewski and Kundzewicz (1997)
studied and identified the scale invariance of the daily river
flow of the river Warta in Poland. They also combined sev-
eral normalized flow series and evaluated the impact of such
combinations on the fractal dimension. More recently, the
scaling properties of runoff in karstic watersheds were also
investigated (Labat et al., 2002).

The objective of present study was to investigate scale in-
variance behavior of daily runoff rate time series for four
agricultural watersheds and their 31 sub-watersheds. The
scaling properties were examined by the fractal dimension
estimated using the shifted box-counting method and by
Hurst exponents estimated using rescaled range (R/S) anal-
ysis.

2 Data and methods

2.1 Runoff data

The database developed by the Hydrological and Remote
Sensing Laboratory of the Agricultural Research Service of
the US Department of Agriculture (USDA/ARS/HRSL) was
the source of the hydrological data analyzed in this study.
It consisted primarily of rainfall/runoff data from the ARS
monitored experimental agricultural watersheds nationwide.
These watersheds represent numerous land uses and agricul-
tural practices and cover a diverse range of climatic condi-
tions across the U.S. About 16 600 station years of rainfall
and runoff were available in the database.

Four agricultural watersheds were selected from the
database: (1) the Little River watershed, Southeast Water-
shed Research Laboratory, Tifton, Georgia; (2) the Little Mill
Creek watershed in the North Appalachian Experimental Wa-
tershed, Coshocton, Ohio; (3) the Reynolds Creek watershed,
Northwest Watershed Research Center, Boise, Idaho; and
(4) the Sleepers River watershed, Danville, Vermont. Sev-
eral factors were taken into account in selecting watersheds
for investigation, including length and completeness of the
records, watershed and sub-watershed sizes, and availability
of other ancillary information. Some descriptions of these
studied watersheds were listed in Table 1.

Each watershed selected contained a number of sub-
watersheds and their properties are summarized in Table 2.
A total of 31 sub-watersheds was analyzed. These sub-
watersheds covered a wide range of sizes from 0.01 km2

(sub-watershed W-23 of the Reynolds Creek watershed) to
334 km2 (sub-watershed W-TB of the Little River water-
shed). Surface runoff in these sub-watersheds was measured
and recorded at various intervals, from a few minutes to sev-
eral hours. In general, more frequent measurements were
made during rain days. The runoff records within each day
were integrated to obtain daily runoff time series for further
analysis.

2.2 Shifted box-counting analysis

The records of a runoff time series can be regarded as a bi-
nary set of points, which is defined on some threshold value.
Zero is generally used as a default threshold value, though
other values>0 can be also used. In this case, only the
observations with the value greater than the threshold are
considered as points of the derived set. In this study, four
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Table 1. Description of four studied watersheds.

Watershed Area Elevation Mean Drainage Land use
precipitation density

(km2) (m) (mm) (km/km2)

Little River Watershed, GA 334 82–148 1140 2.3 Agriculture and forestry are
dominant

Little Mill Creek Watershed, OH 19 248–393 1245 2.6 Forest (40%), Cropland
(25%), and Pasture (20%)

Reynolds Creek Watershed, ID 234 1101–2241 230 at lower elevation and 3.0 Livestock grazing with some
>1100 in higher regions irrigate fields along the creek

Sleepers River Watershed, VT 111 206–784 1100 3.3 Typical northern hardwood
forest with about one-third of
the watershed in pasture land
use for dairy farming

Table 2. Daily runoff records in agricultural watersheds and sub-watersheds studied.

Watershed Sub-watershed Area (km2) Record period Daily mean runoff rate (m3/s)

W-TB 333.8 1 Nov 1971–30 Sep 2002 3.52
W-TF 114.8 1 Jan 1969–30 Sep 2002 1.33

Little River W-TI 49.9 1 Jan 1969–30 Sep 2002 0.67
Watershed, GA W-TJ 22.1 1 Jan 1969–30 Sep 2002 0.29

W-TK 16.7 1 Jan 1969–30 Sep 2002 0.21
W-TM 2.6 1 Jan 1969–31 Dec 1988 0.03

W-5 1.4 1 Oct 1938–1 Oct 1971 0.012
W-10 0.5 5 Oct 1938–1 Oct 1971 0.004
W-91 0.32 1 Oct 1938–1 Oct 1971 0.011

Little Mill Creek W-92 3.7 1 Oct 1938–1 Oct 1971 0.035
Watershed, OH W-94 6.2 1 Oct 1938–1 Oct 1971 0.059

W-95 11.1 1 Oct 1938–22 June 1972 0.098
W-97 18.5 1 Jan 1937–1 Oct 1971 0.181

W-1 233.5 1 Jan 1963–30 Sep 1996 0.56
W-2 36.4 29 Jan 1964–15 April 1994 0.082
W-3 31.8 13 March 1964–31 Dec 1990 0.072
W-4 54.4 29 March 1966–30 Sep 1996 0.42

Reynolds Creek W-11 1.2 1 Jan 1967–31 Dec 1977 0.0075
Watershed, ID W-13 0.4 1 Jan 1963–30 Sep 1996 0.0067

W-14 0.1 7 March 1966–17 April 1984 0.000041
W-16 14.1 1 Jan 1973–20 Dec 1980 0.13
W-23 0.01 15 Jan 1972–30 Sep 1996 0.0000057

W-1 42.9 23 Jan 1959–30 Dec 1973 0.67
W-2 0.6 1 Jan 1961–29 Nov 1971 0.0073
W-3 8.4 1 Jan 1960–2 Jan 1979 0.16

Sleepers River W-4 43.5 1 Jan 1960–30 Dec 1973 0.72
Watershed, VT W-5 111.2 1 Jan 1960–30 Dec 1973 1.97

W-7 21.8 1 Jan 1961–30 Dec 1972 0.34
W-8 15.6 1 Jan 1961–15 May 1979 0.24
W-9 0.5 15 Sep 1961–10 July 1973 0.0076
W-11 2.3 1 May 1964–23 Nov 1972 0.026
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threshold levels of the runoff rate (0, 0.5M, M, and 1.5M,
whereM is the average daily runoff rate) were used to define
the sets. The scaling property of the runoff data series was
measured on the resulting sets by the shifted box-counting
method, which is an improvement proposed by Radziejewski
and Kundzewicz (1997) on the conventional box-counting
method.

In this method, a uniform one-dimensional grid of box
size ε was superimposed onto the time domain on which
the series is defined. The number of non-overlapping grid
segments (boxes) needed to cover the whole series to be
analyzed was counted. Only those boxes that contained at
least one element that was above the threshold value were
counted. The grid position was then shifted in time different
units, from 1 toε–1. The number of boxes,N(ε), contain-
ing elements of the set of interest for all possible shifts were
counted, and finally the counts were averaged.

Different box sizes were used to cover the sets. The mini-
mum box size (ε) used was one day, and then the size was
doubled (i.e., 2, 4, 8, . . . ), until the maximum size (1/5
of the data length) was reached. For sufficiently smallε,
N(ε)∝(1/ε). The relationship ofN(ε) versusε was fitted to a
power law function:

N (ε) = C (1/ε)D (1)

whereC andD are constant values. The fractal dimension,
(D), was calculated as:

D = lim
ε→0

(logN(ε) − logc)/(log(1/ε)) (2)

In applying this method logN(ε) was plotted versus log (1/ε),
and D was estimated from the graph as the slope of the
straight line best fitted to the points.

2.3 Rescaled range (R/S) analysis

Hurst (1951) studied the 847-year record of the overflows of
the Nile River, and found that successive observations in the
series above or below the mean value tended to persist. He
termed this tendency “long-term persistence” or “long-term
memory”. Hurst’s subsequent investigations showed that this
phenomenon was characteristic of the overflow, water stor-
age, and stream flow of many other rivers. While other meth-
ods have also been proposed (Montanari et al., 1997; Hu et
al., 2001; Markovic and Koch, 2005), detecting such per-
sistence phenomena in hydrological series is classically ob-
tained by the adjusted rescaled range (R/S) analysis (Man-
delbrot and Wallis, 1969; Peters, 1994; Zhou et al., 2005),
This analysis involves a statistical rescaling of the original
series over lag times of varying widths. The procedures of
R/S analysis used are described in detail as follows:

Let X(t) be a time series of recorded runoff containing
N readings fromt=1 to t=N . Let X∗(t)=Xt+1, . . . , Xt+n,
represent consecutive observation values within a subset of
the record fromt + 1 to time t+n. The lag time n denotes

the interval of the subset, andt denotes the starting point for
the subset. The mean value,Xm, of the time seriesX∗(t) is
defined as:

Xm = (

i=t+n∑
i=t+1

Xi)/n (3)

The standard deviation of the subset fromt+1 to timet+n,
Sn, is estimated as:

Sn = n−1/2
×

√√√√ t+n∑
r=t+1

(Xr − Xm)2 (4)

The rescaled range is calculated by first rescaling the subset
data by subtracting the sample mean ofX∗(t) as:

Zr = (Xr − Xm) r = t + 1, ..., t + n (5)

And the cumulative time series,Y , is created by:

Yr+1 = Zt+1 r = t + 1 (6)

Yr = (Yr−1 + Zr) r = t + 2, ..., t + n (7)

The adjusted range,Rn, is the accumulative departure from
the mean, i.e. the maximum minus the minimum value ofYr :

Rn = max(Yt+1, ..., Yt+n) − min(Yt+1, ..., Yt+n) (8)

For the interval starting at timet , of width n, R andS are
computed. This is repeated for each successivet , until t

reachesN−n+1. The procedures are repeated for the next
lag timen, until all selected lags have been tested. A general
form of the relationship ofR/S to n (Hurst, 1951):

(R/S)n = c × nH (9)

A log transformation of Eq. (9) gives

log(R/S) = H logn + logc (10)

ExponentH is estimated from the graph as the slope of the
straight line best fitted to the points. The small lags only
represent short-term memory, thus should not be used to es-
timateH values (Taqqu et al., 1995). It should be noted that
H>0.5 may be obtained from R/S method even when a long-
term memory is not present in a time series (Taqqu et al.,
1995; Montanari, 2003).

The empirically defined Hurst exponent is related to the
theoretical fractal dimensionD of the graph of a correspond-
ing time series, as:

D = 2 − H (11)

The scaling analysis on long-term persistence is influenced
by the inherent deterministic component (trends and period-
icities) of the time series, which is particular true for hy-
drological or meteorological time series (Hu et al., 2001;
Kallache et al., 2005). It has been suggested that the deter-
ministic components should be separated from its stochastic

Hydrology and Earth System Sciences, 10, 79–91, 2006 www.copernicus.org/EGU/hess/hess/10/79/



X. Zhou et al.: Runoff scaling in agricultural watersheds 83

ε (day)

0.1 1 10 100 1000 10000

N
 (

ε
)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

 0

1.76

3.52

5.28

Threshold

 
Fig. 1. Log-log plots of number of boxes [N(ε)] versus box size (ε)
for different threshold values (0, 1.76, 3.52, and 5.28 m3/s) using
the shifted box counting method to analyze the runoff rate series
for sub-watershed W-TB of the Litter River watershed in Tifton,
Georgia. In all cases,r2 was>0.99 for the straight lines fitted to
the sections of the graph. Box sizes were exponentially doubled
starting atε=1 day.

components prior to drawing a conclusion on the time se-
ries scaling structure (Klemes, 1974; Montanari et al., 1997;
Radziejewski and Kundzewicz, 1997; Markovic and Koch,
2005). Many approaches have been proposed to distinguish
the deterministic components and long-range components
(Taqqu et al., 1995; Montanari et al., 1999; Maraun et al.,
2004).

The daily runoff time series were transformed as follows
to obtain a process without seasonality (time series with zero
mean and unit standard deviation): (1) logarithms of data
series, (2) subtracted seasonal mean values of the time se-
ries, and (3) divided by seasonal standard deviations of the
time series. The shifted box-counting method and R/S anal-
ysis were also applied on these transformed time series to
investigate the seasonal effects on scaling characterization in
agricultural watersheds.

3 Results and discussion

3.1 Estimated fractal dimension

An example of the shifted box-counting graph logN(ε) ver-
sus logε for the runoff time series in sub-watershed W-TB
of the Little River watershed is displayed in Fig. 1. The
mean daily runoff rate in this example was 3.52 m3 s−1 (Ta-
ble 2). Since logN(ε) versus logε was plotted instead of log
N(ε) versus log (1/ε), the value of the negative slope repre-
sents the estimated fractal dimension of the sets. It should be
noted that the fractal dimensions were estimated for some bi-
nary sets derived from the runoff series based on the chosen
threshold values, not the runoff series itself. The box sizes
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Fig. 2. Shifted box counting graph as in Fig. 1 but with one day in-
crement of box size (ε) for sub-watershed W-TB of the Litter River
watershed in Tifton, Georgia. The break point of the slope occurs
at approximatelyε=365 days.

(time scales) were between one day and 1/5 of the length
of the records. If the runoff time series possessed a scale-
invariance property, a straight line could be fitted to the box-
counting graph or part of it, according to the Eq. (2). Figure 1
shows that for each threshold, two distinct scaling ranges are
apparent, each of which can be fitted with a straight-line sec-
tion by least square regression, instead of a single linear re-
lationship over the entire range of time scales.

The existence of linear relationship over certain time
scales indicates that there is a scale invariant distribution of
runoff in time, which is valid within the defined linear scaling
range. By using fractal concepts, temporal scale invariance
of runoff might be characterized by a single parameter, frac-
tal dimension (D). Since twoD values were obtained from
the box-counting analysis for the time series in Fig. 1 over
the time period under consideration, it implies that its scal-
ing properties vary with the time scales.

Likewise, the runoff time series of other five sub-
watersheds in the Little River watershed as well as all the
sub-watersheds in the other watersheds studied (Little Mill
Creek watershed, Reynolds Creek watershed, and Sleepers
River watershed) all displayed two scaling ranges for each
threshold in their box-counting graphs. The break point [in-
tersection of the two straight line sections in the logN(ε) ver-
sus logε plots] for all thresholds corresponded to the same
box size, which indicates the same scaling ranges are valid
no matter what runoff intensity threshold was used to define
the set.

To further precisely locate the break point, the box-
counting technique was applied with one-day increment of
box size (Fig. 2) instead of the exponential doubling incre-
ments used for Fig. 1. In Fig. 2, the break point was found to
correspond to a box size of approximately 365 days. This
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Table 3. Fractal dimensions (D) of daily runoff rate for six sub-watersheds of the Little River watershed in Tifton, Georgia. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold (m3 s−1) D r2 Threshold D r2

0 0.96 0.999 −1 0.95 0.999
1.76 0.81 0.998 −0.5 0.93 0.999

W-TB 3.52 0.76 0.997 0 0.89 0.999
5.28 0.71 0.994 0.5 0.81 0.999

1 0.65 0.999

0 0.94 0.999 −1 0.96 0.999
0.66 0.83 0.998 −0.5 0.92 0.999

W-TF 1.33 0.77 0.995 0 0.89 0.999
2.00 0.71 0.991 0.5 0.81 0.999

1 0.64 0.999

0 0.93 0.999 −1 0.96 0.999
0.33 0.83 0.997 −0.5 0.91 0.999

W-TI 0.67 0.77 0.995 0 0.89 0.999
1.00 0.70 0.991 0.5 0.81 0.999

1 0.65 0.999

0 0.92 0.999 −1 0.98 0.999
0.15 0.81 0.996 −0.5 0.89 0.999

W-TJ 0.30 0.74 0.994 0 0.88 0.999
0.45 0.68 0.990 0.5 0.81 0.999

1 0.68 0.997

0 0.92 0.999 −1 0.97 0.999
0.10 0.84 0.997 −0.5 0.92 0.999

W-TK 0.20 0.79 0.996 0 0.89 0.999
0.30 0.73 0.994 0.5 0.81 0.999

1 0.66 0.999

0 0.96 0.999 −1 0.96 0.999
0.015 0.83 0.998 −0.5 0.95 0.999

W-TM 0.030 0.76 0.996 0 0.90 0.999
0.045 0.69 0.991 0.5 0.80 0.999

1 0.63 0.993

may be explained by the obvious annual cycle of all the
runoff time series. It has been suggested that the seasonal
cycles should be removed from the original data prior to
drawing conclusions on time series scaling structure (Mon-
tanari et al., 1997; Markovic and Koch, 2005). The shifted
box-counting method was also used to estimate the fractal
dimensions of the deseasonalized time series, which have
zero mean and unity standard deviation. Five threshold val-
ues (−1, −0.5, 0, 0.5, and 1) were used to derive the binary
sets. The results showed that two scaling ranges were also
observed for the deseasonalized runoff series and the break
point again occurred at about 9∼12 months (Fig. 3), although
fractal dimensions changed in scaling range of small box
sizes (Table 3). For example, at the threshold of data mean

(3.52 m3 s−1 for original time series, and 0 for transformed
time series), D increased from 0.76 (original) to 0.89 (desea-
sonalized). The fractal dimensions in scaling range of large
box sizes were approximately equal to 1.0, and not sensitive
to threshold values.

The fact that two scaling ranges were apparent would in-
dicate that the scaling characteristics of the short-term pro-
cess (<1 year) and long-term process (>1 year) of water-
shed runoff were different. Breakpoints in scaling ranges
for watershed runoff were also found in other studies us-
ing the shifted box-counting analysis. In their investigation
of daily flows of the river Warta in Poland, Radziejewski
and Kundzewicz (1997) reported a distinct break point in
the scaling ranges at approximately 2–4 years. They also
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Table 4. Fractal dimensions (D) of daily runoff rate for seven sub-watersheds of the Little Mill Creek watershed in Coshocton, Ohio. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold (m3 s−1) D r2 Threshold D r2

0 1.00 0.999 −1 0.96 0.999
W-5 0.006 0.83 0.995 −0.5 0.91 0.999

0.012 0.75 0.991 0 0.83 0.999
0.018 0.69 0.986 0.5 0.71 0.997

1 0.56 0.994

0 0.99 0.999 −1 0.97 0.999
W-10 0.002 0.79 0.995 −0.5 0.94 0.999

0.004 0.71 0.990 0 0.87 0.999
0.006 0.63 0.983 0.5 0.75 0.994

1 0.57 0.984

0 1.01 0.999 −1 0.97 0.999
W-91 0.0057 0.82 0.996 −0.5 0.93 0.999

0.011 0.75 0.991 0 0.85 0.998
0.172 0.67 0.985 0.5 0.75 0.996

1 0.60 0.990

0 0.99 0.999 −1 0.96 0.999
W-92 0.018 0.82 0.999 −0.5 0.93 0.999

0.036 0.74 0.999 0 0.86 0.999
0.054 0.66 0.998 0.5 0.75 0.995

1 0.59 0.988

0 1.00 0.999 −1 0.96 0.999
W-94 0.03 0.82 0.996 −0.5 0.93 0.999

0.06 0.73 0.991 0 0.86 0.999
0.09 0.66 0.985 0.5 0.75 0.996

1 0.60 0.990

0 0.99 0.999 −1 0.97 0.999
W-95 0.049 0.82 0.997 −0.5 0.93 0.999

0.098 0.73 0.993 0 0.86 0.998
0.147 0.67 0.989 0.5 0.75 0.994

1 0.58 0.988

0 1.00 0.999 −1 0.96 0.999
W-97 0.09 0.82 0.997 −0.5 0.92 0.999

0.18 0.73 0.993 0 0.85 0.998
0.27 0.64 0.987 0.5 0.74 0.994

1 0.60 0.990

detected another less distinct break point located at 10–15
days.

Estimated fractal dimensions in the scaling region less
than 1 year are summarized in Table 3 through 6 for each
of the four watersheds. If we term the scaling range of box
size less than 1 year as range 1, and as 2 otherwise, the
fractal dimension in range 1 decreases as the threshold in-
creases for both the original and deseasonalized series. In

range 1, for example,D decreases from 0.96 at 0 m3 s−1

to 0.71 at 5.28 m3 s−1 for the original runoff time series of
sub-watershed W-TB (Table 3). However, the fractal dimen-
sions at range 2 show almost no change for various thresh-
olds withD=1.0 (Figs. 1 and 3). The dependence of the es-
timated fractal dimension on the defined threshold value was
also observed in previous studies (Olsson et al., 1992, 1993;
Radziejewski and Kundzewicz, 1997). In all of these studies,

www.copernicus.org/EGU/hess/hess/10/79/ Hydrology and Earth System Sciences, 10, 79–91, 2006



86 X. Zhou et al.: Runoff scaling in agricultural watersheds

Table 5. Fractal dimensions (D) of daily runoff rate for nine sub-watersheds of the Reynolds Creek watershed in Boise, Idaho. Fractal
dimensions correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold (m3 s−1) D r2 Threshold D r2

0 1.00 0.999 −1 0.97 0.999
W-1 0.28 0.82 0.997 −0.5 0.93 0.999

0.56 0.77 0.996 0 0.88 0.999
0.84 0.72 0.994 0.5 0.81 0.999

1 0.67 0.999

0 1.00 0.999 −1 0.98 0.999
W-2 0.041 0.85 0.998 −0.5 0.95 0.999

0.082 0.76 0.996 0 0.89 0.999
0.5 0.79 0.999

0.123 0.70 0.994 1 0.63 0.997
0 1.00 0.999 −1 0.97 0.999

W-3 0.036 0.81 0.998 −0.5 0.93 0.999
0.072 0.74 0.996 0 0.88 0.999
0.108 0.68 0.995 0.5 0.80 0.999

1 0.63 0.999

0 1.00 0.999 −1 0.98 0.999
W-4 0.21 0.82 0.997 −0.5 0.94 0.999

0.42 0.75 0.996 0 0.89 0.999
0.63 0.72 0.994 0.5 0.81 0.998

1 0.65 0.995

0 0.98 0.999 −1 0.98 0.999
W-11 0.0038 0.84 0.998 −0.5 0.92 0.999

0.0075 0.77 0.998 0 0.88 0.999
0.0113 0.72 0.997 0.5 0.79 0.998

1 0.64 0.999

0 1.00 0.999 −1 0.97 0.999
W-13 0.0034 0.76 0.993 −0.5 0.93 0.999

0.0067 0.80 0.990 0 0.86 0.999
0.0100 0.79 0.989 0.5 0.75 0.999

1 0.60 0.997

0 0.72 0.994 −1 1.00 0.999
W-14 0.00002 0.67 0.995 −0.5 0.98 0.999

0.00004 0.65 0.995 0 0.72 0.990
0.00006 0.63 0.993 0.5 0.64 0.999

1 0.56 0.999

0 1.00 0.999 −1 0.97 0.999
W-16 0.065 0.84 0.999 −0.5 0.94 0.999

0.130 0.77 0.998 0 0.90 0.999
0.195 0.74 0.996 0.5 0.78 0.997

1 0.62 0.997

0 0.41 0.976 −1 1.0 0.999
W-23 0.00000028 0.41 0.976 −0.5 1.0 0.999

0.00000057 0.41 0.976 0 0.92 0.998
0.00000084 0.41 0.977 0.5 0.88 0.999

1 0.43 0.996
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Table 6. Fractal dimensions (D) of daily runoff rate for nine sub-watersheds of the Sleepers Creek watershed in Vermont. Fractal dimensions
correspond to four threshold levels of the original runoff rate and five thresholds of the transformed series.

Original runoff series Transformed runoff series
Sub-watershed Threshold (m3 s−1) D r2 Threshold D r2

0 1.00 0.999 −1 0.97 0.999
W-1 0.34 0.86 0.997 −0.5 0.90 0.999

0.67 0.73 0.991 0 0.81 0.998
1.00 0.67 0.987 0.5 0.70 0.997

1 0.56 0.994

0 1.00 0.999 −1 0.97 0.999
W-2 0.0036 0.88 0.997 −0.5 0.90 0.999

0.0072 0.76 0.995 0 0.81 0.999
0.0108 0.65 0.986 0.5 0.70 0.994

1 0.56 0.984

0 1.00 0.999 −1 0.99 0.999
W-3 0.08 0.88 0.998 −0.5 0.99 0.999

0.16 0.74 0.992 0 0.97 0.999
0.24 0.65 0.987 0.5 0.64 0.984

1 0.24 0.968

0 1.00 0.999 −1 0.97 0.999
W-4 0.36 0.87 0.997 −0.5 0.91 0.999

0.72 0.74 0.992 0 0.81 0.998
1.08 0.67 0.991 0.5 0.70 0.997

1 0.57 0.996

0 1.00 0.999 −1 0.97 0.999
W-5 0.98 0.87 0.997 −0.5 0.90 0.999

1.97 0.75 0.992 0 0.82 0.999
2.95 0.67 0.989 0.5 0.70 0.997

1 0.58 0.994

0 1.00 0.999 −1 0.99 0.999
W-7 0.17 0.86 0.997 −0.5 0.98 0.999

0.34 0.73 0.994 0 0.93 0.999
0.51 0.67 0.989 0.5 0.63 0.994

1 0.38 0.998

0 1.00 0.999 −1 0.99 0.999
W-8 0.12 0.84 0.999 −0.5 0.99 0.999

0.24 0.73 0.994 0 0.98 0.999
0.36 0.66 0.989 0.5 0.57 0.995

1 0.15 0.958

0 0.98 0.999 −1 0.96 0.999
W-9 0.0038 0.83 0.998 −0.5 0.92 0.999

0.0076 0.73 0.995 0 0.87 0.999
0.0114 0.66 0.994 0.5 0.79 0.998

1 0.56 0.994

0 0.99 0.999 −1 0.99 0.999
W-11 0.013 0.85 0.999 −0.5 0.99 0.999

0.026 0.77 0.995 0 0.96 0.999
0.039 0.69 0.992 0.5 0.76 0.997

1 0.42 0.993
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Fig. 3. Log-log plots of number of boxes [N(ε)] versus box size
(ε) for different threshold values (−1, −0.5, 0, 0.5, 1) using the
shifted box counting method to analyze the deseasonalized runoff
rate series for sub-watershed W-TB of the Litter River watershed in
Tifton, Georgia.

a fractal dimension of 1.0 was obtained when the time scale
exceeded a certain value, which was about 365 days in this
study.

For the original runoff series in this study, for the 0 m3 s−1

threshold,D appropriates or equals to 1.0 for all the runoff
series (Tables 3∼6). This might be because the observations
of daily runoff intensity are nearly all greater than 0, there-
fore, the generated set is almost continuous with few gaps
(no runoff) between them. As a result, a smaller dimension
was obtained from the box-counting plot. In scaling range 2
where the box sizes are greater than one year the fractal di-
mension is equal to 1.0 at all the threshold levels (Fig. 1).
This might be because there would always have at least one
day of a year that the runoff rate exceeded the threshold
value. The regression coefficients of regression lines in the
log N(ε) versus logε plots were high for all the runoff time
series with values greater than or close to 0.990, which indi-
cates a strong linear relation. These consistently high values
are considered requisite to provide confidence in any infer-
ence that the runoff series under investigation demonstrate
scale invariant characteristics.

Table 3 indicates that the fractal dimensions for all the 6
sub-watersheds of the Little River watershed at each level
of the threshold were almost the same, although the con-
tribution areas of these sub-watersheds are quite different
(2.6∼333.8 km2 for sub-watersheds of the Little River wa-
tershed as listed in Table 2). The sub-watersheds of the Lit-
tle River watershed as an example, theD-value of original
runoff series ranged from 0.92 to 0.96 for threshold level 1,
0.81 to 0.83 for level 2, 0.74 to 0.79 for level 3, and 0.68 to
0.71 for level 4 (Table 3). The same pattern was found in all
the other three watersheds (Tables 3 through 5).

The results presented in Tables 3 through 6, and the log
N(ε) versus logε box-counting plots for the runoff time se-
ries were quite consistent across the sub-watersheds of the
four watersheds. With the exception of the two smallest
sub-watersheds (W-14 and W-23 of the Reynolds Creek wa-
tershed), the same fractal dimension (estimated using the
shifted box-counting method) was obtained for the runoff se-
ries at each threshold level although these watersheds varied
markedly in climate, topography, and size (Table 2). For ex-
ample, for a given threshold level, say level 2, the fractal di-
mension is about 0.85 for practically all the runoff time series
in four watersheds (Tables 2 to 5). In other words, runoff time
series in these watersheds and their sub-watersheds have sim-
ilar distribution of occurrence of runoff, and exhibit the same
pattern of scaling, although they have different climates, ge-
ography, soil type, land management, etc.

It should be pointed out that the threshold values used to
define the binary sets from the original runoff series were
different for time series because the mean daily runoff rates
of the sub-watersheds were different (Table 2). Selecting
threshold values based on mean daily runoff rates allows
comparison of the fractal dimensions estimated from differ-
ent runoff time series. The results indicated that although
the daily runoff rates were different by orders of magnitude
(Table 2), the occurrence of runoff had the same distribution.
The transformed series have zero mean and unity standard
deviation, therefore the same threshold values (−1, −0.5, 0,
0.5 and 1) were used for all the time series.

At threshold level 4, the fractal dimensions of runoff time
series for the Little Mill Creek and Sleepers River water-
sheds were slightly less than that for the Little River and
Reynolds Creek watersheds. A lower dimension means that
more points are clustered in groups over time scales. Thus it
indicated that high runoff occurrences are more clustered in
the Little Mill Creek and Sleepers River watersheds than the
other two watersheds.

As discussed above, the occurrence of runoff in agricul-
tural sub-watersheds of various sizes had similar distribu-
tion, making it possible to extrapolate runoff behavior over a
fairly large range of spatial scales within a watershed. How-
ever, this scaling property may not be valid when the sub-
watersheds are small. The box dimension of the runoff series
for the two smallest sub-watersheds (W-14=0.01 km2 and W-
23=0.1 km2) of the Reynolds Creek watershed, were much
lower and did not change at different threshold levels (Ta-
ble 5). It indicated that the distribution of runoff occurrence
in extremely small sub-watersheds might be different from
larger watersheds, and extrapolation might not be feasible at
relatively small scales. One possible explanation might be
that the total volume of surface runoff from a very small sub-
watershed is limited, and measured runoff tends to be almost
zero at most of the time depending on the sensitivity and res-
olution of the measuring instruments. On the other hand, for
the runoff series investigated in this study, no upper restric-
tion of sub-watershed size in scaling was detected.
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Fig. 4. Hurst rescaled range analysis plot for daily runoff time se-
ries of sub-watershed W-TB of the Little River watershed in Tifton,
Georgia. A straight line was fitted to the large lags.

3.2 Estimated Hurst exponent

The Hurst exponent (H) as a useful parameter to describe
long-term persistence of observations in hydrological time
series was initially applied in an empirical manner to water
reservoir design (Hurst, 1951). It was later established that
the Hurst exponent could be theoretically related to the frac-
tal dimension for idealized time series that can be modeled
as fractional Brownian motions. Figure 4 shows an example
of the rescaled range plot used to obtain the Hurst exponent
of the original runoff time series for sub-watershed W-TB in
the Little River watershed. In the plot, two distinct scaling
ranges are clearly displayed. H values should be estimated
from the large lags in R/S plots since the small lags only
represent short-term memory (Taqqu and Teveroski, 1995;
Montanari et al., 2003). A straight line was fitted to the scal-
ing range by least square regression. TheH values of each
runoff time series are presented in Table 7.

Generally,H values of most runoff time series are around
0.50 (Table 7) indicating a random process (Mandelbrot and
Wallis, 1969). Little River Watershed as an example,H val-
ues range from 0.46 to 0.51 for sub-watersheds. For the
Sleepers River sub-watershed group, theH values are much
less than 0.50 (Table 7). A Hurst exponent ofH<0.5 char-
acterizes an unstable phenomenon, and it is unusual in nat-
ural hydrological system (Beran, 1994). Most of river flows
possess anH value around 0.7 (Hurst, 1951). The seasonal
cycle was removed from the original time series for R/S anal-
ysis. Figure 5 shows the R/S plot for W-TB sub-watershed
of the Little River watershed after deseasonalization. The
H values surprisingly increase for deseasonalized runoff se-
ries compared toH values of the original series (Fig. 4 and
Table 7). Different from the original time series, the de-
seasonalized runoff time series haveH values much greater
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Fig. 5. Hurst rescaled range analysis plot for deseasonalized daily
runoff time series of sub-watershed W-TB of the Little River wa-
tershed in Tifton, Georgia. A straight line was fitted to the large
lags.

than 0.5 at large lags with typical value around 0.7, which
indicates a long-term memory (Table 7). H values in the
Reynolds Creek watershed and Sleepers River watershed are
greater than those in the Little River watershed and Little
Mill Creek watershed (Table 7). This is unexpected since
long-term memory will not be removed by superimposing a
periodic component. A satisfactory explanation of such un-
usual behavior in this study is not found. It should be noted
that the runoff time series of these agricultural watersheds
are quite short, especially for the Sleepers River watershed
and Reynolds Creek watershed (Table 2), therefore the esti-
mation of long-term memory based on R/S plots might not
be reliable.

4 Conclusions

The scaling property of daily runoff for 31 sub-watersheds
covering a wide range of sizes in four agricultural watersheds
of different climate and topography was examined using the
shifted box-counting method and Hurst rescaled range anal-
ysis. The same analyses were also applied to the deseason-
alized runoff time series. The results from fractal dimension
estimation showed that long-term records of daily runoff rate
exhibited scale invariance over certain time scales. Two scal-
ing ranges were identified in the shifted box-counting plots
with a break point at about 9∼12 months. The same frac-
tal dimensions were obtained for the sub-watersheds within
each watershed, indicating that the runoff of these sub-
watersheds have similar distribution of occurrence and scal-
ing behavior. However, the Hurst analysis showed that the
daily runoff time series are lack of long-term memory, and
therefore lack of scaling, although they showed short-term
memory. The presence of scaling is not certain for runoff
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Table 7. Hurst exponents (H) of daily runoff time series estimated
using the R/S analysis method.

Watershed Sub-watershed H H

(Original) (Deseasonalized)

W-TB 0.50 0.65
W-TF 0.49 0.71

Little River W-TI 0.48 0.68
Watershed, GA W-TJ 0.51 0.64

W-TK 0.51 0.66
W-TM 0.46 0.79

Average 0.49 0.69

W-5 0.52 0.72
W-10 0.51 0.65
W-91 0.46 0.72

Little Mill Creek W-92 0.46 0.70
Watershed, OH W-94 0.47 0.73

W-95 0.46 0.70
W-97 0.53 0.65

Average 0.49 0.70

W-1 0.60 0.86
W-2 0.54 0.91
W-3 0.60 0.94
W-4 0.59 0.92

Reynolds Creek W-11 0.53 0.91
Watershed, ID W-13 0.43 0.90

W-14 0.60 N/A
W-16 0.27 0.95
W-23 0.37 N/A

Average 0.50 0.91

W-1 0.45 0.66
W-2 0.30 0.79
W-3 0.41 0.85

Sleepers River W-4 0.32 0.70
Watershed, VT W-5 0.29 0.63

W-7 0.39 0.93
W-8 0.35 0.83
W-9 0.42 0.69
W-11 0.63 0.95

Average 0.40 0.78

time series in agricultural watersheds based on the four wa-
tersheds as well as their sub-watersheds investigated. More
watersheds with longer records are needed for further study.
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