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Abstract. Flood safety is of the utmost concern for water
resources management agencies charged with operating and
maintaining reservoir systems. Risk evaluations guide de-
sign of infrastructure alterations or lead to potential changes
in operations. Changes in climate may change the risk due
to floods and therefore decisions to alter infrastructure with
a life span of decades or longer may benefit from the use of
climate projections as opposed to use of only historical ob-
servations. This manuscript presents a set of methods meant
to support flood frequency evaluation based on current down-
scaled climate projections and the potential implications of
changing flood risk on how evaluations are made. Methods
are demonstrated in four case study basins: the Boise River
above Lucky Peak Dam, the San Joaquin River above Fri-
ant Dam, the James River above Jamestown Dam, and the
Gunnison River above Blue Mesa Dam. The analytical de-
sign includes three core elements: (1) a rationale for select-
ing climate projections to represent available climate pro-
jections; (2) generation of runoff projections consistent with
climate projections using a process-based hydrologic model
and temporal disaggregation of monthly downscaled climate
projections into 6-h weather forcings required by the hydro-
logic model; and (3) analysis of flood frequency distributions
based on runoff projection results. In addition to demonstrat-
ing the methodology, this paper also presents method choices
under each analytical element, and the resulting implications
to how flood frequencies are evaluated. The methods used re-
produce the antecedent calibration period well. The approach
results in a unidirectional shift in modeled flood magnitudes.
The comparison between an expanding retrospective (current
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paradigm for flood frequency estimation) and a lookahead
flood frequency approach indicate potential for significant bi-
ases in flood frequency estimation.

1 Introduction

The design and safety assessment of large dams in the
western United States requires estimates of flood frequency.
Flood frequency relates the magnitude of floods with their
probabilities of occurrence. Often flood frequencies are de-
scribed by return period. The return period concept, as of-
ten communicated in the community and practice, is that a
100-year flood is an event that should happen, on average,
once every hundred years. A more strict interpretation of
a flood frequency for a 100-year flood is that it is a flood
that is believed to have a probability of being equaled or ex-
ceeded of 0.01 in any one year. While we do not wish to
challenge the current paradigm of communication of flood
hazard, it is reasonable to question the paradigm of what a
return period means within a nonstationarity system (Siva-
palan and Samuel, 2009). The nonstationarity concern and
current paradigm are not mutually exclusive if it is acknowl-
edged that a flood with a 100-year return period is not a con-
stant value. Or, working within our preferred strict interpre-
tation of the flood return period, a flood with an exceedance
probability of 0.01 this year may have a different exceedance
probability in the future.

Risk based decisions often use the probability of occur-
rence of a flood with a specified magnitude and the conse-
quences of that event. If the consequences are deemed unac-
ceptable, modifications of infrastructure or changes in oper-
ations may be necessary to alleviate the risk. In a changing
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climate, and given how flood risks are generated from the
observed record of the past, it may be prudent to include in-
formation that not only describes the flood potential of the
past but also of the future.

Flood frequency estimation within the United States gov-
ernment has as its fundamental doctrine, Bulletin 17-B
published by the Interagency Advisory Committee on Wa-
ter Data (IACWD, 1982). Released in 1982, Bulletin
17-B provides guidance for observational data treatment
and parameter estimation for flood frequency distributions
(IACWD, 1982). The general methodology of Bulletin 17-B
is to gather a time series of annual maximum floods at the lo-
cation that the user wishes to determine the flood magnitude
versus frequency relationship. In additional to the gage in-
formation, any historical information about large floods that
may pre-date the gage record is also used. Fundamentally,
Bulletin 17-B assumes that flood potential can be described
by a three parameter log-Pearson distribution (log-Pearson
III distribution). It is known that of the three parameters
(mean, standard deviation, and skew) the skew is most sensi-
tive to the information set. Bulletin 17-B, therefore, provides
guidance on estimating the skew based upon a weighted sum
of the collected data set and regional estimates of skew. All
of the information is then used to fit to a log-Pearson III pa-
rameter distribution1. This fitted distribution then describes
the probability of an annual maximum flood being exceeded.
The process used in Bulletin 17-B assumes many things such
as that the annual maximum floods are independent sam-
ples from a general population. This idea that information
from the past is a good indication of current potential or fu-
ture potential is called a stationarity assumption. This sta-
tionarity assumption may be less valid when the climate is
changing and the flood potential at a location may be chang-
ing along with the climate. Nearly three decades ago it was
acknowledged within Bulletin 17-B that little attention was
given to the subject of non-stationarity and that future stud-
ies were needed. Within Bulletin 17-B, although the word
non-stationarity is not used explicitly, the concept is alluded
to among the eight recommendations for future studies. It
was identified that there is a need to account for watersheds
altered by urbanization whose flood potential may not be re-
flected by the observed and historical data at the location
(p. 27+28, IACWD, 1982).

That vast majority of research since the release of Bulletin
17-B has been focused on improved treatment of historical
data from instrumental records and/or historical and pale-
oflood proxies. There are studies that have looked at more ef-
ficient selection of distributional parameters (e.g., Lane and
Cohn 1996, O’Connell et al., 2002, Stedinger et al., 1988)
that perform better when compared to Bulletin 17-B (e.g.,
Cohn et al., 1997; England, 2003). There are studies that

1This is a generalization of a more complex procedure that takes
into account, for example, outlier data and consideration for mixed-
population flood generation mechanisms.

have improved estimates of uncertainty (e.g., Cohn et al.,
2001; O’Connell et al., 2002) and those that avoid a distri-
butional assumption (e.g., O’Connell, 2005). These methods
have improved the treatment of historical data and as a col-
lection have made vast strides forward to fitting distributions
to data that has been collected for a specific site when an as-
sumption of stationarity is supportable. There has also been
work in an attempt to expand our assumptions of known vari-
ability through the incorporation of paleoflood data which
may have come from a different climate than that observed
or known in the historical record (e.g. Frances et al., 1994;
O’Connell, 1999).

It is acknowledged that the assumption of historical cli-
mate stationarity has always been questionable in flood fre-
quency estimation. This assumption would appear to become
even more questionable in the future (e.g., Milly et al., 2008),
particularly as a warming climate may to lead to changes
in precipitation regime, seasonality, and other characteristics
relevant to floods. Some studies have focused on how shifts
in climate might lead to changes in extreme events such as
precipitation and temperature (Manabe et al., 1980; Easter-
ling et al., 2000). The Intergovernmental Panel on Climate
change recently reported in their fourth assessment report
that the climate is warming and that it is very likely that
heavy precipitation events will increase in frequency over
most areas (IPCC, 2007a). Evidence has been mounting that
precipitation rates and patterns have been changing in the ob-
servational record (e.g., Alexander et al., 2006; Kunkel et
al., 2003; Kanae et al., 2004). There are further studies that
have used climate projections to show shifts in future pre-
cipitation patterns (e.g., Easterling et al., 2000; Emori et al.,
2005). Changes in extreme precipitation patterns have con-
sequences for changes in flood patterns. Hamlet and Letten-
maier (2007) showed that there were changes in flood risks
during observed warming of the 20th century.

There have been process-based approaches to consider
changes to floods and flood frequencies. Using GCM pro-
jections, Hirabayashi et al. (2008) have simulated daily dis-
charges for projected climate and shown changes in precipi-
tation and flood patterns that they identified as an increased
frequency of flooding over many regions except North Amer-
ican and central to western Eurasia. Cameron et al. (2000)
used GCM simulations to drive the TOPMODEL hydrology
model to show the changes to probability of occurrence of
specific discharges for the gauged, upland Wye catchment in
Wales, UK. Sivapalan and Samuel (2009) illustrate an ap-
proach to use process-based methods to estimate flood fre-
quencies that do not rely upon stationarity assumptions for
three catchments in Australia.

From a statistical perspective, methods have been pro-
posed to address how a changing climate might be related
to flood frequency estimation. For example, Griffis and Ste-
dinger (2007) proposed to use observed trends in log-Pearson
III parameter estimates as a function of time to estimate
distributional parameters that may be useful to describe the
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flood potential into the future. To evaluate the physical re-
sponse to a changing climate there remains limited guidance
on how to incorporate climate projection data into a frame-
work for flood hazard assessment. In this manuscript meth-
ods to address this gap in planning capabilities are intro-
duced. The methods described are meant to identify whether
climate change may influence risk assessments made using
Bulletin 17-B. The methods are designed to reveal flood
frequency consistent with climate projection information at
a user-specified future period. Methods are demonstrated
in four case study basins: the Boise River above Lucky
Peak Dam, the San Joaquin River above Friant Dam, the
James River above Jamestown Dam, and the Gunnison River
above Blue Mesa Dam. The analytical design includes three
core elements: (1) a rationale for selecting climate pro-
jections with the objective of representing the breadth of
climate projection information available; (2) generation of
runoff projections consistent with climate projections, using
a process-based hydrologic model and temporal disaggre-
gation of monthly downscaled climate projections into sub-
monthly weather forcings required by the hydrologic model;
and (3) analysis of flood frequency distributions based on
runoff projection results.

2 Data sources and methods

The following methods describe the steps utilized in this
manuscript to estimate flood frequency from climate projec-
tions. There were four river basins considered (Sect. 2.1).
The focus is to evaluate the physical response to climate pro-
jections through the use of a hydrologic tool (Sect. 2.2). The
general methodology described below is to use GCM projec-
tions of temperature and precipitation to drive a hydrology
model. The GCM projections are at a spatial and temporal
scale incompatible with modeling flood flows so spatial and
temporal downscaling methods will be employed.

For each of the four river basins a subset of 9 climate pro-
jections of temperature and precipitation were chosen from
a candidate pool of 112 potentials at each of three lookahead
periods (2011–2040, 2041–2070, and 2071–2099) (Sects. 2.3
and 2.4). For each of the climate projections a weather gen-
eration scheme was employed to temporally disaggregate the
monthly climate projection values into 6-h values (Sect. 2.5)
necessary to drive the hydrologic tool. The weather gen-
eration approach has a random component to it and there-
fore was applied 10 times per projection. Ten random gen-
erations were chosen, somewhat arbitrarily, through assess-
ment of the differences among each random generation. The
hydrologic simulations result in a set of flows from which
the annual maximum discharges were compiled. The sim-
ulated annual maximum discharges were then considered in
the context of estimating flood risk through flood frequency
analyses (Sect. 2.6).

Fig. 1. Basin Selections are the Boise River above Lucky Peak
Dam, the James River above Jamestown Dam, the San Joaquin
River above Friant Dam, and the Gunnison River above Blue Mesa
Dam.

2.1 Basin selection

The effect of a changing climate may vary geographically.
Therefore, to determine the suitability of the methods pro-
posed it was desired to have a geographically diverse set of
examples. Four geographically diverse reservoir watersheds
were considered, each having dams that were either built by
the Bureau of Reclamation (BOR) or significantly influence
Reclamation operations. The four basins are the Boise River,
above Lucky Peak Dam, the James River above Jamestown
Dam, the Gunnison River above Blue Mesa Dam, and the
San Joaquin River above Friant Dam (Fig. 1). Each of these
basins has a strong snowmelt component to flood generation.
Most often these basins have annual maximum discharges
that are snowmelt only, or rain-on-snowmelt events. It is ex-
pected, however, that there are different geographic and other
conditions that affect flood response to climate change (Ham-
let and Lettenmaier, 2007).

Lucky Peak Dam is located at 43◦31′ N, 116◦03′ W on
the Boise River near Boise, Idaho. The drainage area
at Lucky Peak Dam on the Boise River is approximately
6940 km2 (2680 mi2). The elevation at the dam is roughly
914 m (3000 ft) and maximum elevation in the basin is ap-
proximately 2900 m (9500 ft). The mean annual precipita-
tion is very elevation dependant with approximately 279 mm
(11 inches) of annual precipitation at the reservoir and up to
approximately 1200 mm (50 inches) in the headwaters. The
terrain in the basin is best categorized as bare sagebrush at
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reservoir elevation and forested and subalpine terrain in the
higher elevations.

Jamestown Dam is located at 46◦55′ N, 98◦42′ W on the
James River approximately 1.5 miles from Jamestown, North
Dakota. The elevations in the basin range from approxi-
mately 450 m at the dam to approximately 580 m. The wa-
tershed area upstream of the dam is approximately 4750 km2

(1750 mi2). The “knob and kettle” drainage area is the re-
sult of the most recent glaciation. There are numerous de-
pressions, or closed portions, that do not drain or drain in-
frequently. The mean annual precipitation over the basin is
approximately 480 mm with the majority falling from May
to September.

Blue Mesa Dam lies at 38◦27′ N, 107◦20′ W on the Gun-
nison River near Gunnison in south central Colorado. The
dam impounds Blue Mesa Reservoir and drains approxi-
mately 8900 km2 (3434 mi2). The drainage is some of the
most rugged of the entire Colorado River basin consisting of
peaks over 4265 m high with long sloping ridges, and nar-
row valley floors. The elevation at the dam site is approx-
imately 2290 m. Mean annual precipitation varies from ap-
proximately 760 mm in the high elevations to approximately
250 mm in the valleys.

Friant Dam is located near 37◦00′ N, 119◦42′ W on the
San Joaquin River about 19 miles from Fresno, California.
The dam impounds Millerton Lake. The drainage area at Fri-
ant Dam is approximately 4120 km2 (1591 mi2). Drainage is
from the western slope of the Sierra Nevada range. Eleva-
tions in the basin range from 170 m at the dam to just under
4260 m along the crest of the Sierra Nevada range. The ter-
rain in the basin may be described as rugged forest. Mean
annual precipitation over the basin is approximately 900 mm
which varies significantly by elevation.

2.2 Hydrologic tool

The hydrologic model used in this study is the National
Weather Service River Forecast System (NWSRFS) Sacra-
mento Soil Moisture Accounting (SAC-SMA) Model (Bur-
nash et al., 1971). The SAC-SMA Model is coupled to the
Anderson Snow Model of snow accumulation and ablation
(Anderson, 1973). This model was chosen because it is the
operational model of the National Weather Service and cal-
ibrated models for all of the chosen basins were available.
SAC-SMA consists of two upper and three lower soil mois-
ture storage zones. The two upper zones are free and tension
water storage and the three lower zones are a primary free,
a supplemental free and a tension water storage zone (Bur-
nash, 1995). The snow accumulation and ablation model
computes a freezing height to distribute rain and snow by el-
evation. The NWSRFS SAC-SMA Model has a long history
of operational use within the United States Federal Agencies.
Despite the fact that this study looks at characterization of fu-
ture climate, calibration sets based on an antecedent period

were not altered for the future period. Further discussion of
this assumption can be found in Sect. 3.4.

2.3 Climate projections data

In order to evaluate the potential changes in flood frequency
from projected climate changes it is desired to have a current
set of climate projections that encapsulate the projected fu-
ture climate variability. In preparation for the IPCC’s fourth
assessment report (IPCC, 2007a, b), climate model output
was collected as the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase
3 (CMIP3) multi-model dataset (Meehl et al., 2007). The
CMIP3 archive houses projections made from climate mod-
els that include coupled atmospheric and ocean general circu-
lation models (GCMs). Each of these models simulate global
response to various future greenhouse gas emissions paths
(IPCC, 2000). The GHG emission paths were defined begin-
ning from the end of the 20th century from lower to higher
emission rates of carbon dioxide into the atmosphere as a
subjective function of global technological and economic de-
velopments during the 21st century.

The grid resolutions of the CMIP3 models are O(102) km,
which is not appropriate to evaluate the impacts to local
flood hydrology where information at less than O(10) km is
needed. For example, the hydrologic models used in this
study are used to support operational flood forecasting ob-
jectives and have been applied at resolutions of O(10) km to
appropriately represent flood-relevant hydrologic processes.
Spatial downscaling is used to bridge this gap in spatial res-
olution. There are two broad types of downscaling available,
dynamic and statistical. A statistical downscaling approach
was selected for use here as it provides information that is
well tested and documented, automated and efficient enough
to permit downscaling of many projections, able to produce
output that statistically matches historical observations, and
is capable of producing spatially and temporally continuous
fine-scale precipitation and temperature information at the
basins modeled (Brekke et al., 2009). Potential drawbacks
to a statistical downscaling approach include the lack of ca-
pability of a statistical approach to identify or model local
climate effects and land-surface feedbacks (Salathe et al.,
2007). There is a further inherent assumption of stationarity
that the statistical relationships observed between fine scale
observations of the past and the GCMs are relationships that
will continue in the future. Despite these drawbacks the sta-
tistical approach has been shown to provide capabilities com-
petitive with dynamical methods (Wood et al., 2004). There
are multiple methods to accomplish statistical downscaling
(e.g., Wood et al., 2002; Wood et al., 2004; Maurer and Hi-
dalgo, 2008).

For this study, the focus was having access to a large set
of consistently downscaled climate projections over each of
the case study basins. Using these criteria, a decision was
made to use data from the “Statistically Downscaled WCRP
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CMIP3 Climate Projections” archivehttp://gdo-dcp.ucllnl.
org/downscaledcmip3 projections/ (Maurer et al., 2007).
These data were developed using a statistical downscal-
ing technique called bias-correction spatial disaggregation
(Wood et al., 2002, 2004) that has been used to support nu-
merous investigations on projected hydrologic impacts under
climate change (Payne et al., 2004; Van Rheenan et al., 2004;
Maurer, 2007; Christensen and Lettenmaier, 2007; Anderson
et al., 2008; Brekke et al., 2009). The data archive includes
downscaled projections of 112 CMIP3 projections of simu-
lated monthly climate from 1950–2099 and at 1/8◦ spatial
resolution.

All 112 projections were obtained for the latitude lon-
gitude coordinate of the dam for the purposes of projec-
tion selection described in Sect. 2.4 and subsequently over
the entire basin in support of the weather generation meth-
ods described in Sect. 2.5. The particular projections are
available at the archive described above. For the pur-
pose of numbering the 112 projections they were numbered
first by model in ascending alphabetical order, second by
emissions path in ascending alphabetical order, and finally
by model run in ascending numeric order. For example,
the projections are labeled<model>.<path>.<run> in the
archive and the projections numbered here #1 through #3 are
therefore bccrbcm20.1.sresa1b, bccrbcm20.1.sresa2, and
bccr bcm20.1.sresb1, respectively.

2.4 Projection selection

The desire of using projected climate and considering more
than a single projection is to portray that there is not a known
future climate and to consider the variability with respect to
temperature and precipitation changes and lookahead peri-
ods. Ideally to estimate flood risk at some point in the fu-
ture one could assign a probability distribution to the expec-
tation of temperature and precipitation. For example one ap-
proach could be to use all 112 projections, treated as equally
likely as an ensemble representation of projected climates.
This approach has the advantage of not requiring assign-
ment of probabilities to specific projections. However, the
results would tend toward the central tendency of the 112
projections with little weight on the projections that show
dramatic shifts and may have the most significant implica-
tions on flood risk. A second approach could be to attempt to
evaluate model performance over the historical period at the
locations of interest and use the “best” models for projec-
tions. This approach, however, has been shown to be diffi-
cult and sensitive to evaluation metric (Gleckler et al., 2008;
Reicher et al., 2008). In addition, it might not reduce the
assessed projection uncertainty given the role of emissions
scenarios and initialization options in establishing this un-
certainty (Brekke et al., 2008).

Here a method was chosen that chose a subset of 9 GCM
model projections that encapsulate the variability of precip-
itation and temperature. This information, as opposed to at-

tempting to identify a specific risk can be used to show the
range of risk that may exist. The selected nine projections
are allowed to vary by lookahead period. Three lookahead
periods were considered, 2011–2040, 2041–2070, and 2071–
2099. These periods represent three different decision time
frames in which one might change operations or physical
infrastructure. A tercile grid is constructed based upon the
projected temperature and precipitation relative to the simu-
lated historical antecedent period (1971–2000) (Fig. 2). The
tercile grid is generated through a Cartesian sectioning be-
tween the maximum and minimum changes in precipitation
and temperature at the lookahead period relative to the an-
tecedent period. The GCM projections that were geomet-
rically calculated to be closest to the nine vertices encom-
passing the array of projected temperature and precipitation
shifts were chosen. Projections have internal climate dynam-
ics and just as there is observed interdecadal variability in the
observed and historical past, the climate models have inter-
decadal variability in their projected future. The interdecadal
variability are not necessarily synchronous with each other
and also do not necessarily share the same dynamics or initial
conditions and have other differences Projections, therefore,
depending when in the future they are examined, may display
different relative precipitation and temperature. The relative
precipitation and temperature of the 9 selected GCM projec-
tions are hence different by lookahead period. In Fig. 2 the
blue lines in the second and third panel represent the location
of projection from the 2011–2040 lookahead in the 2041–
2070 and 2071–2099 lookahead, respectively. For example,
for the Gunnison River above Blue Mesa for the lookahead
period of 2011–2040 projection 87 (ncarccsm30.6.sresa1b)
represents the GCM projection geometrically closest to the
tercile of smallest precipitation ratio and largest temperature
ratio Fig. 2 – first panel). At the 2041–2070 lookahead pe-
riod projection 87 remains in the upper third of temperature
amongst the projections but is in the middle third of precipi-
tation ratios. At the 2071–2099 lookahead period, projection
87 is in the middle third of both precipitation and temperature
ratios.

2.5 Weather generation

The bias corrected spatially downscaled projections in the
archive (Sect. 2.3) describe time series of temperature and
precipitation conditions on a monthly time step. The SAC-
SMA model, as applied in the case study basins, operate
on 6-h values of temperature and precipitation. Therefore,
a method is necessary to equate monthly average temper-
ature and precipitation values to 6-hourly values to force
each basin SAC-SMA model. The general approach was
to scale a monthly set of observed 6-hourly values by the
ratio of projected temperature and precipitation to the ob-
served monthly average temperature and precipitation within
the scaled month (e.g., Maurer, 2007; Reclamation, 2008).
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(a) Gunnison River above Blue Mesa Dam
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(b) San Joaquin River above Friant Dam
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Fig. 2. Projection Selection by lookahead period and basin. Numbers represent spread of individual climate projections. Panels moving from
left to right are the three lookahead periods. Colored numbers represent the selected projections for that lookahead period. Colored lines
show where previously selected projection are with respect to spread at future lookahead periods.
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(c) James River above Jamestown Dam
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(d) Boise River above Lucky Peak Dam
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Fig. 2. Continued.
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Table 1. Weather generation scenarios (column 2) and their corresponding sampling constraints (columns 2 and 3). The implication of the
sampling constraints for number of random possibilities shown in column 4.

Weather Generation
considerations

Sampling Constraint –
scaled month must be from
same month as projection

Sampling Constraint –
Temperature and Precipitation
subdivided to limit scaling
constant

Result of Sampling Constraint:
Number of observed historical
months available for selection
for a 50 year calibration set

1-sq Yes, Scaled month must come
from same as projected month

No 50

4-sq Yes, Scaled month must come
from same as projected month

Yes 12 or 13

8-sq No, scaled month can be any
month

Yes 75

Three separate sampling criteria were considered to create
set of 6-hourly values to scale, as described below. All cri-
teria preserve the intermittency and timing of storm duration
and types that appear within the calibration set. For exam-
ple, consider a projection for January 2031 (temperature Jan-
uary 2031 = T2031, precipitation January 2031 = P2031) and
a set of observed historical Januarys from each SAC-SMA
models calibration weather data. A random selection of one
of calibration set of January 6-h time series is made, for ex-
ample T1990 and P1990. A scale constant is then applied for
temperature and precipitation, respectively to the 6-h incre-
ments such that the aggregate for both precipitation and tem-
perature matches T2031 and P2031 (precip constant * P1990
= P2031, temp constant * T1990 = T2031). The result is a
new set of temperature and precipitation values whose mean
is consistent with the projection values (2031) but whose tim-
ing and intermittency is consistent with the observed values
(1990). This choice of methodology is adopted and/or modi-
fied from earlier work (Wood et al., 2002). The technique has
been used in other hydrologic impacts studies under climate
change where monthly climate projections were temporally
disaggregated to develop sub-monthly weather forcings (e.g.,
Payne et al., 2004; Christensen and Lettenmaier, 2007; Mau-
rer, 2007).

Key choices in this temporal disaggregation scheme
are the eligibility constraints applied to observed-historical
months during the process of resampling. Several past im-
plementations of this scheme have adopted the constraint that
the sampled month only needs to be of the same calendar
month as the projected month (denoted “one-square” in this
manuscript, or 1-sq for short). With this constraint, it is pos-
sible that the projected month may be relatively hot and wet
while the resampled observed month is relatively cold and
dry. This could lead to rather large scaling ratios applied
to the historical month’s 6-h forcings and call into question
about whether the new and adjusted forcings are still plau-
sible in the context of observed historical data. The tails of
flood frequency distributions are important, and this opportu-
nity for large scaling ratios can lead to anomalies in the tails

of the distributions. A decision was thus made in this study
to consider alternative eligibility constraints on resampling
in order to limit such scaling ratios.

Two alternative sampling constraints were considered (Ta-
ble 1). The first alternative sampling constraint is called
4-sq (four-square). It involves subdividing the calibration
weather years into four categories: hot-wet, hot-dry, cold-
wet, and cold-dry. For example for basin A, each January
from the calibration set of 1967–1997 were collected and the
6-h observed values were aggregated into monthly mean for
temperature and total precipitation. The median temperature
amongst these mean monthly values was then found and used
to separate hot and cold Januaries. Then for the hot Januaries
the median precipitation value was found and the hot Januar-
ies were then divided into hot-dry and hot-wet Januaries. For
the cold Januaries the procedure is repeated. The result for
the 4 sq method for basin A with 50 years of calibration set
data is that there would be 12 or 13 historical Januaries in
each of the four categories. Sampling of observed histor-
ical months was then constrained so that the categories of
sampled and projected months matched in each sampling in-
stance. For example if projected January 2031 is hot and dry
then the randomly selected 6-h values for scaling must come
from the 12 or 13 historical Januaries that have been catego-
rized as such.

The second alternative sampling constraint is called 8-sq
(eight-square). It involves the same procedures as the 4-
square with a further subdivision by precipitation to result
in four categories of precipitation and two categories of tem-
perature. A relaxation was made from the 4-square method
that constrained sampling for a projected month to the same
month from the observed historical period. The motiva-
tion for further subdividing by precipitation was to further
limit the scaling constant that would be necessary to match
the aggregate observed 6-h time increments to the projected
mean monthly value. The motivation for the relaxation of the
monthly sampling constraint was to expand the opportunities
for random selection for any projected month.
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Because there is a random component to the sampling
methodology for temporal downscaling it was desired to
consider the range of variability that this randomness may
induce. Therefore, multiple downscaling simulations were
done for each projection selected for each lookahead period.
The simulation set size was arbitrarily set to 10 simulations
of 6-hourly values to be run through the SAC-SMA hydro-
logic model. To show the variability induced through the
temporal downscaling methodology consider a single projec-
tion. For the lookahead period 2011–2040 there are 30 years
of modeled results for each simulation. The key variables of
interest for further discussion are the annual maximum floods
of each year. For a single projection (inmcm30.1.a1b), the
temporal downscaling random component results in an em-
pirical distribution of the ten simulations that can encom-
pass a relatively wide distribution of annual maximum floods
(Fig. 3). Empirical cumulative distribution functions of an-
nual maximum floods during the lookahead period 2011–
2040 for one projection set are shown in Fig. 3. The 90%
non-exceedance level for this projection and simulation set
ranges from approximately 400 to 1200 m3/s. The weather
generation approach used to generate in Fig. 3 was the 8-sq
method.

The National Weather Service considers two methods (sta-
tion and area-weighted) for calibrating the SAC-SMA mod-
els. The station method involves mapping the gridded GCM
data to a location in space using bi-linear interpolation. This
method is used if the corresponding SAC-SMA observed
mean-area temperature (MAT) for an elevation zone is repre-
sented by a “synthetic” station. This is usually the case where
there is significant elevation variation across the basin. Ob-
served temperature data from a network of climate stations is
mapped to the “synthetic” station to produce the MAT for
a given basin elevation zone. This “synthetic” station lo-
cation is used to extract the GCM gridded data for a given
basin elevation zone. The temperature value is interpolated
from the four grid cell centers surrounding the “synthetic”
station location. Although there is not one single standard
for which SAC-SMA models are calibrated an example can
be reviewed within Bissell and Orwig (1995).

The area-weighted approach is used in cases where the
MAT was developed without the use of a “synthetic” station.
This involves intersecting the boundary of the basin elevation
zone with the 1/8 degree grid then deriving a temperature
value for the zone area by area-weighting the temperature of
each grid cell that intersects the zone boundary.

The methods (“sythetic” station vs. MAT) used for cali-
bration of the SAC-SMA model by the National Weather Ser-
vice were retained when mapping the GCM average tempera-
ture data from the 1/8 degree grid to the SAC-SMA basin ele-
vation zones. The designation throughout the rest of the anal-
ysis is S for station weighting, and AW for area weighting.
For example, the weather generation with 8-sq constraints on
the Boise River with station weighting is designated S-8sq.
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Fig. 3. Empirical Cumulative Distribution Functions for annual
maximum floods from 1967–1997 retrospective period for in-
mcm30.1.a1b projection and 10 simulations of 8-sq weather gen-
eration.

The James River basin is the only of the four evaluated in this
manuscript that had an AW.

2.6 Hydrologic hazard assessment

To put information into a context that is used throughout
flood hazard assessment and management the information
developed from the simulation model are used to create flood
frequency curves. For each projection and each simulation
by lookahead there is a modeled annual maximum flood. For
each of the three lookahead periods two types of flood fre-
quencies were considered, the expanding retrospective flood
frequency and the lookahead flood frequency. The expand-
ing retrospective is the current paradigm for flood frequency.
This is how most flood frequencies are calculated in that all
information at a location of interest is considered equally
when developing a flood frequency curve. Every year there
is a new observation of an annual maximum discharge added
to an expanding record of floods at that location. For exam-
ple, using expanding retrospective analysis for a basin that
has a period of record from 1950–1990 those forty occur-
rences of annual maxima would be treated as independent
samples from a general population and used to fit a distribu-
tion to (i.e. Log-Pearson III from Bulletin 17-B). If time then
proceeds to 2020 there would be 30 additional independent
samples (i.e., 1950–2020). This approach relies heavily on
the stationarity assumption in that all 70 years are assumed
to independent samples from the same distribution.

The lookahead flood frequency differs from this approach
in that it will consider only a limited set of floods to estimate
a flood frequency curve. This approach is used to somewhat
account for non-stationarity. The implicit statement is that
floods are representative of a given climate state and sam-
ples from a different climate state should not be considered.
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For example, for a location that has a period of record from
1950–2020 as before only the period of 1990–2020 is used to
compute the flood frequency. Although the period of 1990–
2020 is considered to be stationary when fitting a distribution
it assumes that the period of 1950–1990 does not come from
this same distribution.

The expanding retrospective flood frequencies were cal-
culated as follows. For the 2011–2040 future period, a total
of 60 samples were used to fit the log-Pearson III distribu-
tion. These 60 samples comprised 30 random samples taken
from between the 5th and 95th quantiles from the length of
record of the calibration set for that particular basin and 30
samples taken from the 5th and 95th quantiles between the
2011–2040 simulations. The result is 60 total samples which
were then fit to a log-Pearson III distribution as described in
Bulletin 17-B without any regional skew adjustment. Be-
cause of the random selection of 30 simulations from the
4500 possibilities for the retrospective period and the 30 ran-
dom samples from the 2700 possibilities for the 2011–2040
period, the procedure was performed 100 times to account
for some of the variability. For the expanding retrospective
approach for the 2041–2070 lookahead period, the same pro-
cedure was followed as the 2011–2040 period with the ad-
ditional 30 random samples taken between the 5th and 95th
quantiles from the 30 years by 9 GCM projections by 10 sim-
ulations between 2040–2070 for a total of 90 samples. Like-
wise there were a total of 120 samples for the 2071–2099
lookahead period.

The lookahead flood frequencies were calculated as fol-
lows. For the 2011–2040 lookahead period 30 random sam-
ples were taken from between the 5th and 95th quantiles
from the 30 years by 9 GCM projections by 10 simulations
between 2011 and 2040. The difference between this set and
the expanding retrospective set is that for this set there is an
absence of the retrospective period. The sample size from
which a distribution is being fit is smaller. This is a total
of 30 samples which were then fit to a log-Pearson III dis-
tribution as described in Bulletin 17-B without any regional
skew adjustment. This was repeated 100 times. For the
2041–2070 lookahead period 30 random samples were taken
from between the 5th and 95th quantiles from the 30 years
by 9 GCM projections by 10 simulations between 2041 and
2070. Again, this is a total of 30 samples which were then fit
to a log-Pearson III distribution. The procedure for the 2071–
2099 lookahead was similar. For each of the three lookahead
periods using the lookahead flood frequency approach there
are 30 years of data from which to fit the log-Pearson III dis-
tribution. For the 2071–2099 lookahead period the difference
between the lookahead approach (30 years data) and the ex-
panding retrospective approach (120 years data) is 90 years
of data. The implications of reducing the sample size in an
attempt to better characterize the population from which the
floods are being observed are examined later in the docu-
ment.

3 Results and discussion

3.1 Weather generation for evaluating flood potential

Three sampling constraints (variations) described in Sect. 2.5
were considered from a weather generation method based on
historical resampling. It was desired to use only one of the
three variations to evaluate changes to flood frequency. A
comparison of performance was therefore made between the
weather generation variations. The comparison metric cho-
sen was the calibration set used for each of the NWSRFS
SAC-SMA models. As described in Sect. 2.4 for each of
the three lookahead periods there were nine projections se-
lected based on their variation in temperature and precipita-
tion. With ten simulations available per projection and a fifty
year calibration set there are a combined, 13 500 annual max-
imum discharges per location over the antecedent period. An
evaluation was made to evaluate how many of the simulations
and weather generation sequences encapsulated the observed
historical annual maximum flows at each basin. It was deter-
mined that the 8-sq weather generation constraint variation
produced empirical distribution functions that best encapsu-
lated the observed historical flows for all basins. Figure 4
shows the empirical distribution functions of the annual max-
imum discharges plotted for the Boise River Basin at Lucky
Peak Dam on each panel of Fig. 4: first for the simulated
historical using observed historical weather (blue line), and
then for simulated retrospective period defined as 1951–1997
that overlaps the observed historical weather. For this period
there are 270 grey lines representing the 9 GCM projections
for each of the three-lookahead periods simulated over the
retrospective period. For both the S-1sq and the S-4sq clouds
there are only a couple simulation sets that encompass the
observed historical over the 0.4 to approximately 0.6 proba-
bility range. The S-8sq has an approximately equal number
of simulations greater and less than the observed historical
values. However, it is the less frequent floods (probabilities
of occurrence less than 0.01) that are the most influential in
estimating flood risk. It is assumed that the ability to simulate
the entire probability range of flows is a good representation
of simulating more extreme events. The ability to reproduce
the calibration set empirical distribution is evidence of the
ability of the methods as described in Sect. 2 perform ade-
quately over this range of exceedances. It is for the reason
that the 8sq constraint variation always encompasses the ob-
served historical values better than the 1sq and the 4sq vari-
ations. Therefore, only the 8sq variation will continue to be
evaluated for the remainder of the analysis.

Figure 4 also shows that the tail of the distribution the pro-
jection driven floods begin to deviate significantly from the
calibration set at approximately the non-exceedance proba-
bility of 0.9 to 0.95 for all weather generation variations.
This also was the case for the other basins. This deviation
may come as a result of scaling anomalies despite the attempt
to provide some constraints. Despite the selection criteria for
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Fig. 4. Evaluation of candidate weather generation schemes for Boise River basin above Lucky Peak Dam. Blue line represents empirical
distribution function (ECDF) for the calibration set 1967–1997 for the SAC-SMA model. Grey lines represent ensemble of of projections
for the same 1967–1997 period. Three different panels represent the three candidate weather generation schemes.

weather generation described previously it is still possible
to have a monthly precipitation value scaled by a value that
causes an anomalous result. Thus, a further assumption was
made for the distribution fitting described and analyzed in
Sect. 3.3 that only those flows with non-exceedance probabil-
ities between 0.05 and 0.95 would be used to fit log-Pearson
III distributions.

3.2 Evaluation of flood potential by lookahead

For each lookahead period there are nine projections with
10 simulations each for a total of 90 simulated projections.
Each simulated projection is a thirty year time period for a
total of 2700 simulated years per lookahead. To evaluate
potential changes in flood potential using the 8sq weather
generation constraint, the empirical distribution functions by
lookahead periods were compared. All 2700 simulated an-
nual maximum values were pooled to create a single empiri-
cal distribution function for each of three lookahead periods.
Figure 5 shows the empirical distribution functions for each
of the four basins included in this study for each lookahead
period as well as the retrospective period (1951–1997). Each
of the four basins has different simulated responses as well
as some similarities.

The Boise River Basin shows an increase in annual max-
imum flood values with time for essentially all probabili-
ties of occurrence. The San Joaquin River Basin has virtu-

ally identical annual maximum flood values through time for
non-exceedance probabilities below approximately 0.30 and
increasing annual maximum flood values with time for non-
exceedance probabilities above 0.30. The Gunnison River
Basin shows a decrease in annual maximum flood values for
non-exceedance probabilities up to approximately 0.70 and
an increase in annual maximum flood values with lookahead
time for non-exceedance probabilities greater than 0.70. The
James River Basin shows virtually no change in annual max-
imum flood values for non-exceedance probabilities up to ap-
proximately 0.45 with an increase in annual maximum flood
values with time for non-exceedance probabilities greater
than 0.45. In all four basins the upper end of the distributions,
the flood magnitudes with greater than 70% non-exceedance
probabilities increase with time. As previously discussed, it
is the most infrequent of floods that often define the flood
hazard and risk at a location and all four of the basins have
simulated values that show an increase in annual maximum
flood values for rare events. The following section will dis-
cuss the implications of this result in a context of character-
izing flood risk through the methods as currently utilized in
practice. Further research is needed to determine the basin or
climate characteristics that drive the differences and similar-
ities amongst the basins and their flood potentials.

www.hydrol-earth-syst-sci.net/13/2119/2009/ Hydrol. Earth Syst. Sci., 13, 2119–2136, 2009



2130 D. A. Raff et al.: A framework for assessing flood frequency

(a) Boise (b) San Joaquin

0 200 400 600 800 1000 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instantaneous Peaks − S−8sq

Flow Rate (m3/s)

E
C

D
F

 

 

Retrospective
2011−2040
2041−2070
2071−2099

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instantaneous Peaks − S−8sq

Flow Rate (m3/s)

E
C

D
F

 

 

Retrospective
2011−2040
2041−2070
2071−2099

(c) Gunnison (d) James

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instantaneous Peaks − S−8sq

Flow Rate (m3/s)

E
C

D
F

 

 

Retrospective
2011−2040
2041−2070
2071−2099

0 50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instantaneous Peaks − AW−8sq

Flow Rate (m3/s)

E
C

D
F

 

 

Retrospective
2011−2040
2041−2070
2071−2099

Fig. 5. Cumulative distributions of annual maximum discharge based on ensemble hydrologic simulation for the periods and basins shown.
Retrospective period is defined as 1951–1997 for all basins. CDFs based on SacSMA simulation of GCM simulated historic climate.

3.3 Expanding retrospective vs. lookahead flood
frequency evaluation

As described in Sect. 2.6, the most common method to esti-
mate flood risk is to use an expanding retrospective analysis.
A second method was also described that only considers the
most recent time period to evaluate flood risk. In Sect. 3.2
it was shown that for the four basins there can be varying
deviations of simulated future flood potential from those in
the retrospective period. The expectation is therefore that
the flood frequency estimations will also differ by lookahead
period. For example for the Boise River Basin that shows an
increase in annual maximum floods for each of the lookahead
periods the expanding retrospective approach to evaluate the
flood frequency in 2099 will be a blend of all years leading
up to 2099 despite the fact that the 2071–2099 period itself
does not appear to share much in common with 1951–1997.

Figure 6 shows the expanding retrospective vs. lookahead
approach to flood frequency for each of the basins and each
of the lookahead periods. The solid blue lines in each of
the plots represent the median flood frequency curve from
the 100 flood frequency curves using the methods described
in Sect. 2.6 for the expanding retrospective approach. The
dashed blue lines represent the flood frequency curves that
had 10 and 90th quantile 100-year return period values from
the random selections. The colored solid and dashed lines
have corresponding meanings for the lookahead flood fre-
quency approach. From Fig. 6 there are clear differences in
the flood frequency estimates depending on whether the ex-
panding retrospective approach or the lookahead approach
was employed. The implications for the 100-year flood are
now discussed.
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(a) Gunnison River above Blue Mesa Dam (b) San Joaquin River above Friant Dam
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Fig. 6. Flood Frequency Curves for the locations and lookahead periods as specified. Blue lines represent the Expanding retrospective
approach and colored lines represent lookahead approach.
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(c) James River above Jamestown Dam (d) Boise River above Lucky Peak Dam
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Fig. 6. Continued.
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Table 2. 100 year discharge values for each of the basins and lookahead periods as specified as well as percent differences among expanding
retrospective approach and lookahead approach for flood frequency analysis. All values are simulated annual maximum discharges in m3/s
rounded to the nearest 10.

2011–2040 2041–2070 2071–2099

Boise River Basin Expanding Retrospective 1050 1110 1170
Lookahead 1140 1180 1360
Percent Difference 9% 6% 14%

San Joaquin River Basin Expanding Retrospective 7850 8870 11 180
Lookahead 9490 10 740 16 230
Percent Difference 17% 17% 31%

James River Basin Expanding Retrospective 225 255 278
Lookahead 272 355 411
Percent Difference 17% 28% 32%

Gunnison River Basin Expanding Retrospective 470 480 490
Lookahead 490 520 530
Percent Difference 4% 8% 8%

For all locations and all lookahead periods the expanding
retrospective approach results in a lower estimate of the 100-
year flood than the lookahead approach (Table 2). The per-
cent differences in the 100-year estimates vary by lookahead
period and by basin. For the 2011–2040 lookahead period
the smallest percent difference is 4% in the Boise River Basin
and the largest percent difference is 17% in the San Joaquin
and Jamestown River Basins. For the 2041–2070 lookahead
periods the percent differences range from 8% to 28% in the
Boise River Basin and the James River Basin, respectively.
The smallest percent difference in the 2071–2099 is 8% for
the Boise River Basin and the largest percent difference is
32% for the James River Basin. The implication of this re-
sult is that to characterize the flood frequency given current
methods of fitting log-Pearson III distributions may result in
a biased underestimate of the true flood potential. This is an
intuitive result given that the empirical distribution functions
for each of the locations show an increased trend to bigger
floods. The expanding retrospective approach to characteriz-
ing the floods continues to give equal weight to floods that
occurred during an entirely different climatology.

Perhaps a more important implication is in the context of
designing for some lookahead period. Consider if we were
to make a flood frequency estimate in 2041 for a structure
with a life span until 2099 for each of the four basins an-
alyzed in this manuscript. The current methodology would
be the expanding retrospective approach over the retrospec-
tive period 1951–2041. If the flood potential is increasing
through time however at the end of the life span, 2099, of the
structure than the flood potential at that time may be very dif-
ferent than the 1951–2041. So consider a comparison of the
expanding retrospective approach for the 2011–2041 looka-
head period as described in Table 2 and the lookahead ap-

proach for 2071–2099. The differences for the four basins
are 11%, 52%, 23%, and 45% for the Gunnison, San Joaquin,
Boise, and James River Basins, respectively. Therefore, the
design would be underestimating the flood with a given risk
by between 11% and 52%, depending on the basin, over the
life span of the project.

3.4 Uncertainties

This manuscript presents methods to quantitatively describe
the flood potential and flood frequency using climate pro-
jections. The results, analyses, and discussion within this
manuscript are all subject to the uncertainties associated with
the data and methods employed. The uncertainties involved
in greenhouse gas emissions used to generate the climate pro-
jections are not fully known. The climate projections are
from state-of-the-art global circulation models that have an
ability to simulate the past, but the models ability to char-
acterize the future is uncertain. There are also uncertainties
associated with the bias corrected spatial downscale method-
ology employed for spatial disaggregation. The assumption
that the fine grid scale spacing relationship to climate model
outputs remains the same in the future is a stationarity as-
sumption, though it is a less strict stationarity assumption
assuming the entire flood frequency curve is stationary in
time. The weather generation methods also have uncertain-
ties associated with them and rely on an assumption that the
weather patterns observed historically are similar to those
that may occur in the future but will just be warmer or cooler,
wetter or drier. Despite all of these uncertainties and assump-
tions the methods presented attempt to encompass the state-
of-the-art knowledge and ability to simulate future runoff
from climate projections.
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The hydrology model used, SAC-SMA, have parameter-
ized land surface schemes that are calibrated to past events. It
was assumed in this study that these calibrations are reason-
able for the future period were kept constant. This approach
is first order in that we do not account for developing model
physics and parameters. The approach is well supported in
the literature of assessing hydrologic impacts through of-
fline hydrology models as opposed to hydrology models
embedded within climate models (e.g., Miller et al., 2003;
Mauer, 2007; Christensen and Lettenmaier, 2007; Purkey et
al., 2007). For example, although one of the inputs into the
SAC-SMA model is potential evapotranspiration (PET) and
PET may be altered in a changing climate, the value was not
altered as part of this study. This approach is justified by
Miller et al. (2003) that showed that sensitivity to the PET
with projected temperature changes was relatively small.

It is also somewhat necessary, to reiterate, the climate
models operate at a spatial scale that is inconsistent with the
generation of flood flows. We have thus relied upon the cli-
mate models for representations of temperature and precipi-
tation. We then rely upon a spatial and temporal downscaling
techniques to drive the off line hydrology model. Figure 4
shows that the ability of these methods, over the antecedent
period, is adequate at reproducing the calibration set floods
for non-exceedance probabilities between approximately 0.5
and 0.95.

The results also lead to the need for further research. Each
of the four basins responds differently to the climate projec-
tions. For a complete understanding of the flood response
to climate change it will be important to determine why the
responses differ. Key questions are: Is temperature the dom-
inant driver, or is precipitation, or some combination? It may
also be useful to determine what sorts of generalizations may
be derived from these basins to similar basins elsewhere.

4 Conclusions

A set of methods have been developed and presented that
allow for the estimation of flood potential given a set of cli-
mate projections. These methods are intended to provide an
envelope of expected variability of the climate through an
equally weighted tercile selection of candidate projections of
temperature and precipitation. Through the use of a weather
generation scheme and a rainfall runoff tool simulated an-
nual maximum discharges are derived for lookahead periods
of 2011–2040, 2041–2070, and 2071–2099. These annual
maximum discharges are then put into the context of flood
frequency analysis. Results indicate that for the four basins
analyzed in this study the climate projections result in an in-
creased simulated annual maximum flood potential through
time. An expanding retrospective approach to characteriz-
ing flood hazard may increasingly underestimate the flood
potential as time progresses. Decisions based upon the ex-
panding retrospective approach to characterizing flood fre-

quency could be based upon underestimates of future flood
potential. Additional work is required to understand the dif-
ferences in basin response with the climate forcings, but cur-
rent results indicate that more consideration should be given
to non-stationarity assumptions when estimating flood risk.
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