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Abstract. This study presents a generalized analytical solu-
tion for one-dimensional solute transport in finite spatial do-
main subject to arbitrary time-dependent inlet boundary con-
dition. The governing equation includes terms accounting
for advection, hydrodynamic dispersion, linear equilibrium
sorption, and first order decay processes. The generalized
analytical solution is derived by using the Laplace transform
with respect to time and the generalized integral transform
technique with respect to the spatial coordinate. Some spe-
cial cases are presented and compared to illustrate the ro-
bustness of the derived generalized analytical solution. Re-
sult shows an excellent agreement between the analytical and
numerical solutions. The analytical solutions of the special
cases derived in this study have practical applications. More-
over, the derived generalized solution which consists an inte-
gral representation is evaluated by the numerical integration
to extend its usage. The developed generalized solution of-
fers a convenient tool for further development of analytical
solution of specified time-dependent inlet boundary condi-
tions or numerical evaluation of the concentration field for
arbitrary time-dependent inlet boundary problem.

1 Introduction

Solute transport in subsurface is generally described with
the advection-dispersion equation (ADE). Analytical solu-
tions for one-, two- and three-dimensional ADEs have been
reported in literature for predicting the transport of various
contaminants in the semi-finite or infinite spatial domain
(e.g., van Genuchten and Alves, 1982; Batu, 1989, 1993,
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1996; Leij et al., 1991, 1993; Chen et al., 1996; Park and
Zhan, 2001; Yeh and Yeh, 2007; Zhan et al., 2009; Chen
et al., 2011a). The number of analytical solutions for fi-
nite spatial domain is limited compared with semi-finite or
infinite spatial domain solutions. The reason for the lack
of progress in developing analytical solutions for finite spa-
tial domain is that the solution procedures tend to be rela-
tively cumbersome, requiring complicated or difficult math-
ematical derivation and manipulations (Peréz Guerrero et al.,
2009a, b). In groundwater hydrology, the Laplace transform
technique has been widely applied to develop the analytical
solutions to ADE. The process of applying Laplace transform
to obtain analytical solutions for finite spatial domain in the
Laplace space is not complicated, whereas analytically in-
verting the analytical solution from the Laplace space back to
the original time domain is much more difficult. The inverse
Laplace transform is mostly performed based on the complex
functions and residual theory, thus limiting the numbers and
types of the closed-form analytical solutions for finite spatial
domain. Accordingly, some researchers used the classic or
generalized integral transform technique to develop the ana-
lytical solution for solute transport in finite spatial domain.
For instance, the analytical solutions for one-dimensional
advection-dispersion transport in finite spatial domain sub-
ject to first- and third-type inlet boundary conditions were
presented by Clearly and Adrian (1973), Selim and Mansell
(1976), respectively. van Genuchten and Alves (1982) pre-
sented the analytical solution for finite spatial domain as-
sociated with exponentially decaying time-dependent inlet
boundary condition. Recently, Pérez Guerrero et al. (2009a)
presented a general integral transform technique which pro-
vides a systematic, efficient, and straightforward approach
for deriving the analytical solution of the solute transport
within a finite spatial domain. Prior to applying general
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integral transform technique Pérez Guerrero et al. (2009a)
suggested that a change-of-variable is carried out to homog-
enize the inhomogeneous boundary condition using a filter
function because that solutions of inhomogeneous problems
based on eigenfunction expansions may converge slowly or
even exhibit anomalous behavior, especially in the vicinity
of the boundaries as noted by Ozisik (1980) and Cotta and
Mikhailov (1997). For the case of the transport in a finite
spatial domain associated with time-invariant boundary con-
ditions, the filter function for homogenizing the inhomoge-
neous boundary condition can be easily derived. However,
the procedure for obtaining the filter function for finite spa-
tial domain with time-dependent boundary condition is much
more complicated because of the need to define the filter
function over both the time and spatial domain. Accordingly,
the application of generalized integral technique to obtain the
analytical solution for ADE in finite spatial domain is lim-
ited to time-invariant constant and time-dependent exponen-
tially decaying inlet boundary condition (Pérez Guerrero et
al., 2009a, b, 2010a; Pérez Guerrero and Skaggs, 2010b).

As the authors aware, analytical solution for finite spa-
tial domain associated with arbitrary time-dependent inlet
boundary condition has not been reported in literature yet. In
many instances the solute transport problems may involve the
various types of time-dependent inlet boundary conditions.
For example, such as naturally occurring isotopes moving
from a flow-through lake into an aquifer can be dependent
upon natural, cyclic, water-quality variations; or liquid waste
disposal of a human-made system operating on a periodic cy-
cle. Additionally, the tracer test may be performed by adopt-
ing a time-dependent input mode. The solution for arbitrary
time-dependent input function should be useful for describ-
ing solute transport in a natural or human-made system in
which the input at a boundary is a function of time (Logan
and Zlotnik, 1995, 1996). In the present study we attempt
to derive the generalized analytical solution for ADE in fi-
nite spatial domain subject to arbitrary time-dependent inlet
boundary condition. Laplace transform in combination with
generalized integral transform is used to obtain the gener-
alized analytical solution. Laplace transform is applied to
convert the time-dependent inhomogeneous boundary con-
dition into non-time-dependent boundary condition. Thus,
the constraint in obtaining the filter function for transport in
finite spatial domain with transient boundary condition can
be overcome. The generalized analytical solution is applied
to derive some specific analytical solutions to demonstrate
its practical applications. Moreover, the generalized analyt-
ical solution which consists of a definite integral expression
is evaluated by means of numerical integration technique to
extend its applicability for describing solute transport associ-
ated with arbitrary time-dependent inlet boundary condition.

2 Governing equations

Herein we consider a problem of one-dimensional advective-
dispersive solute transport in finite spatial domain subject
to arbitrary time-dependent inlet boundary condition. The
solute transport equation incorporates terms accounting for
advection, dispersion, linear equilibrium sorption, and first-
order decay processes. The governing equation for this solute
transport problem is expressed as

D
∂2C

∂x2
−V

∂C

∂x
−kC=R

∂C

∂t
(1)

whereC(x,t) is the solute concentration;x is the spatial co-
ordinate;t is time;V =

U
φ

stands for the average linear ve-
locity of the pore fluid, whereU is specific discharge, or Dar-
cian velocity andφ is porosity;D represents the longitudinal
dispersion coefficient;R is the retardation coefficient of the
solute, andk is the first-order decay rate constant.

The initial and boundary conditions considered herein are

C(x,t = 0)= 0 0≤ x ≤L (2)

VC(x= 0,t)−D
∂C(x= 0,t)

∂x
=Vf (t)t >0 (3)

∂C(x=L,y,t)

∂x
= 0t >0 (4)

whereL is the length of the finite spatial domain,f (t) rep-
resents the arbitrary solute concentration applied atx = 0
which will be specified later.

Inserting the following dimensionless variables,xD = x/L

andtD =V t/RL into Eqs. (1) to (4) yields the following gov-
erning equation and its auxiliary initial and boundary condi-
tions in dimensionless form as

1

Pe

∂2C

∂x2
D

−
∂C

∂xD
−kDC=

∂C

∂tD
(5)

C(xD,tD = 0)= 0 0≤ xD ≤ 1 (6)

C(x= 0,tD)−
1

Pe

∂C(xD = 0,tD)

∂xD
= f (

RL

V
tD)tD>0 (7)

∂C(xD = 1,tD)

∂xD
= 0tD>0 (8)

where Pe= VL
/
D andkD = kL

/
V .

3 Derivation of the Generalized Analytical Solution

The analytical solution to Eq. (5) subject to Eqs. (6) to (8)
is derived using the Laplace transform with respect totD and
the general integral transform technique with respect toxD.

First, the Laplace transform is carried out on Eq. (5) with
the help of Eq. (6) and its auxiliary boundary conditions in
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Eqs. (7) and (8) with respect totD. After the Laplace trans-
form procedure the governing equation (Eq. 5) and boundary
conditions (Eqs. 7 to 8) become

1

Pe

d2CL

dx2
D

−
dCL

dxD
−(kD +s)CL = 0 (9)

CL(xD = 0,s)−
1

Pe

∂CL(xD = 0,s)

∂xD
= fL(s) (10)

dCL(xD = 1,s)

dxD
= 0 (11)

wheres denotes the dimensionless Laplace transform param-
eter andCL(xD,s), andfL(s) represent the Laplace trans-
forms ofC(xD,tD) andf (RLtD

/
V ), respectively, which are

defined by the following equations

CL(xD,s)=L[C(xD,tD)] =

∞∫
0

C(xD,tD)e
−stDdtD (12)

fL(s)=L[f (
RL

V
tD)] =

∞∫
0

f (
RL

V
tD)e

−stDdtD (13)

The general integral transform technique is then adopted
to analytically solve the Eq. (9) and its auxiliary bound-
ary conditions in Eq. (10). Further information regard-
ing the use of the generalized integral transform can be
found in Ṕerez Guerreo et al. (2009a, b, 2010a; Chen et
al., 2011b). Prior to applying the general integral trans-
form technique a change-of-variable is carried out to ho-
mogenize the boundary condition in Eq. (10) and to covert
Eq. (9) into a purely diffusive type differential equation. This
approach was demonstrated previously by Peréz Guerreo
et al. (2009a). Inserting the variable changeCV(xD,s)=

[CL(xD,s)−fL(s)]exp
(
−

Pe
2 xD

)
, Eqs. (9)–(11) can be writ-

ten in terms ofCV(xD,s) as

1

Pe

d2CV

dx2
D

−

(
Pe

4
+kD +s

)
CV = exp

(
−

Pe

2
xD

)
(kD +s)fL(s) (14)

dCV(xD = 0,s)

dxD
−

Pe

2
CV(xD = 0,s)= 0 (15)

dCV(xD = 1,s)

dxD
+

Pe

2
CV(xD = 1,s)= 0 (16)

Following the procedures of the generalized integral trans-
form, the eigenfunction is determined from the following
Sturm-Liouville problem with the same kinds of boundary
conditions as specified forCV(xD,s):

d2K(xD)

dx2
D

+ψ2K(xD)= 0 (17)

dK(xD = 0)

dxD
−

Pe

2
K(xD = 0)= 0 (18)

dK(xD = 1)

dxD
+

Pe

2
K(xD = 1)= 0 (19)

Solving for Eqs. (17)–(19), we have the following normal-
ized eigenfunction

K(ψm,zD)=

√
2
[
ψmcos(ψmzD)+

Pe
2 sin(ψmzD)

]
(
Pe2

4 +
Pe
2 +ψ2

m

) 1
2

(20)

whereψm is the eigenvalue determined from the following
equation:

ψmcotψm−
ψ2
m

Pe
+

Pe

4
= 0 (21)

The generalized integral transform pairs are readily defined
as

CV(ψm,s)=

1∫
0

K(ψm,xD)CV(xD,s)dxD (22a)

CV(xD,tD)=

∞∑
m=1

K(ψm,xD)CV(ψm,s) (22b)

Making use of the above generalized integral transform on
Eq. (14) and solving forCV(xD,s) , one obtain

CV(xD,s)=

−
√

2ψmPe(
Pe2
4 +

Pe
2 +ψ2

m

) 1
2
(

Pe2
4 +ψ2

m

) ·
s+kD

s+
ψ2
m

Pe +
Pe
4 +kD +s

fL(s) (23)

The analytical solution in original domain can readily be ob-
tained by successively applications of the general integral
transform inversion (Eq. 23), change of variable, as well as
the Laplace transform inversion. The inverse Laplace trans-
form is achieved using convolution theorem. Following the
aforementioned procedures, the final analytical solution can
be expressed in dimensionless form as

C(xD,tD)= f (
RL

V
tD)−

∞∑
m=1

exp

(
Pe

2
xD

)
E(ψm,xD)F (tD) (24)

whereE(ψm,xD)=
2Peψm

[
ψmcos(ψmxD)+

Pe
2 sin(ψmxD)

]
(
Pe2

4 +
Pe
2 +ψ2

m

)(
Pe2

4 +ψ2
m

) ,

F(tD)= f

(
RL

V
tD

)
−

(
ψ2
m

Pe
+

Pe

4

)
e
−

(
ψ2
m

Pe +
Pe
4 +kD

)
tD

tD∫
0

f

(
RL

V
τ

)
e

(
ψ2
m

Pe +
Pe
4 +kD

)
τ
dτ
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Table 1. Three time-dependent input functions and their corresponding analytical solutions. The solutions for constant and exponential
decaying time-dependent input functions are the same as those reported in literature.

Specified Input
functionf (t)

Solution expression for specified input functionf (t)

f (t)=C0 C(x,t)=C0
[
B1(x)−B2(x,t)

]
B1(x)= 1−

∞∑
m=1

E(ψm,x)
kL2
D

exp
(
V x
2D

)
ψ2
m+

(
VL
2D

)2
+
kL2
D

B2(x,t)=
∞∑
m=1

E(ψm,x)

[
ψ2
m+

(
VL
2D

)2
]

exp

(
V x
2D−

kt
R

−
V 2t
4DR−

ψ2
mDt

L2R

)
ψ2
m+

(
VL
2D

)2
+
kL2
D

E(βm,x)=

2VL
D
ψm

[
ψm

(
ψmx
L

)
+

VL
2D sin

(
ψmx
L

)]
[(

VL
2D

)2
+

VL
2D+ψ2

m

][(
VL
2D

)2
+ψ2

m

]
f (t)=Cae

−λt C(x,t)=Cae
−λt

[
F1(x)−F2(x,t)

]
F1(x)= 1−

∞∑
m=1

E(ψm,x)
(k−λR)L2

D
exp

(
V x
2D

)
ψ2
m+

(
VL
2D

)2
+
(k−λR)L2

D

F2(x,t)=
∞∑
m=1

E(βm,x)

[
ψ2
m+

(
VL
2D

)2
]

exp

(
V x
2D−

kt
R

+λt− V 2t
4DR−

ψ2
mDt

L2R

)
ψ2
m+

(
VL
2D

)2
+
(k−λR)L2

D

f (t)

=Casin(ωt)
C(xD,tD)=Cb

[
G1(x,t)+G2(x,t)−G3(x,t)

]
G1(x,t)= sin(ω,t)−

∞∑
m=1

=

E(ψm,x)

{[
ψ2
m+

(
VL
2D

)2
+
kL2
D

]
kL2
D

+
ωRL2
D

}
exp

(
V x
2D

)
[
ψ2
m+

(
VL
2D

)2
+
kL2
D

]2

+

(
ωRL2
D

)2
sin(ωt)

G2(x,t)=
∞∑
m=1

E(ψm,x)

{[
ψ2
m+

(
VL
2D

)2
]
ωRL2
D

}
exp

(
V x
2D

)
[
ψ2
m+

(
VL
2D

)2
+
kL2
D

]2

+

(
ωRL2
D

)2
cos(ωt)

G3(x,t)=
∞∑
m=1

E(ψm,x)

{[
ψ2
m+

(
VL
2D

)2
]
ωRL2
D

}
exp

(
V x
2D−

kt
R

−
V 2t
4DR−

ψ2
mDt

L2R

)
[
ψ2
m+

(
VL
2D

)2
+
kL2
D

]2

+

(
ωRL2
D

)2

4 Results and discussion

4.1 Development of specific solutions using the
generalized analytical solution

The generalized analytical solution (Eq. 24) provides use-
ful foundation for deriving specific analytical solutions hav-
ing practical applications. Solution for specified time-
dependent input function can be readily derived by substi-
tuting f

(
RLtD

/
V
)

into the integral expression of Eq. (24).
In this study three specific analytical solutions for con-
stant, exponentially decaying and sinusoidally periodic time-
dependent input functions are derived using integral expres-

sion of Eq. (24) (Detailed derivation is provided in Ap-
pendix). Table 1 summarizes three specified time-dependent
input functions and their corresponding analytical solutions.
The solutions for constant and exponentially decaying in-
put functions have previously presented in literature (van
Genuchten and Alves, 1982). The solutions for constant
and exponentially decaying time-dependent input functions
in Table 1 are the same as those reported in literature.

The solution for a finite spatial domain associated with si-
nusoidally periodic boundary condition with has not been
presented in literature. The specific analytical solution for
sinusoidally periodic input function is in the form of the sum
of the infinite series expansion and can be straightforwardly
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Table 2. Descriptive simulation conditions and transport parame-
ters.

Parameter Value

Domain length
L [m] 100
Average velocity
V [m day−1] 1
Longitudinal dispersion coefficient
D [m2 day−1] 20
Retardation factor
R [−] 1
First decay rate constant
k [1 day−1] 0.002
Frequency of sinusoidal
periodic input function
ω [1 day−1] 0.01
Decay rate constant of exponential
decaying input function
λ [1 day−1] 0.01

evaluated. Generally, the number of the terms in the infinite
series expansion plays a key role in determining the accu-
rate result. Accordingly, we are interested to examine how
many terms are required to numerically determine the accu-
rate solution. The parameter values for the numerical results
for sinusoidal periodic input function are summarized in Ta-
ble 2. Table 3 illustrates the convergence of the numerical
evaluation of analytical solution for the sinusoidally periodic
input. The required number of terms drastically increases
with increasing Pe. Numbers of terms 10, 60 and 1800 can
achieve convergence to 4 decimal places for Pe equal to 1,
10 and 50. After determining the number of terms for so-
lution convergence we compare the developed periodic ana-
lytical solution with the corresponding numerical solution to
examine the correctness of the mathematical derivations and
manipulations in the solution development for sinusoidal pe-
riodic input function. The numerical solution is generated
using the Laplace transform finite difference (LTFD) tech-
nique proposed by Moridis and Reddel (1991). The LTFD
technique has several advantages over the classical finite dif-
ference method. The input parameter values are the same as
those in Table 2. Figure 1 depicts the breakthrough curves
observed atx = 100 m obtained from the specific analytical
solution and the corresponding numerical solution. As ex-
pected, the developed analytical solution agrees well with the
corresponding numerical solution.

4.2 Effects ofD, k, V on periodic solute transport

After validating the analytical solution for sinusoidally peri-
odic input function, we use this analytical solution to inves-
tigate the effect of longitudinal dispersion coefficient (D),
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Fig. 1. Comparison of the breakthrough curves atx = 100 m ob-
tained from the developed specific analytical solution for sinu-
soidally periodic input function (f (t)= 1+ sint) and the corre-
sponding numerical solution.
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Fig. 2. Comparison of the breakthrough curves atx = 100 m for
differentD. The sinusoidal periodic input function isf (t)= 1+

sint . ParameterD is varied and other parameters are kept constant.
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Table 3. Solution convergence for sinusoidal periodic function (1+

sint) (M is number of terms summed).

Pe= 1

t [day] M = 2 M = 4 M = 6 M = 8 M = 10

16 0.2798 0.2781 0.2780 0.2779 0.2779
32 0.6697 0.6681 0.6681 0.6681 0.6681
48 1.0033 1.0022 1.0021 1.0021 1.0021
64 1.2614 1.2609 1.2608 1.2608 1.2608
80 1.4237 1.4237 1.4237 1.4237 1.4237
96 1.4762 1.4767 1.4768 1.4768 1.4768

112 1.4174 1.4183 1.4184 1.4184 1.4184
128 1.2605 1.2616 1.2617 1.2617 1.2617
144 1.0325 1.0336 1.0337 1.0337 1.0337
160 0.7708 0.7716 0.7717 0.7717 0.7717
176 0.5173 0.5178 0.5178 0.5178 0.5178
192 0.3127 0.3126 0.3126 0.3126 0.3126
208 0.1893 0.1887 0.1886 0.1886 0.1886
224 0.1669 0.1658 0.1657 0.1657 0.1657
140 0.2491 0.2475 0.2475 0.2474 0.2474
256 0.4229 0.4212 0.4211 0.4211 0.4211
272 0.6609 0.6592 0.6591 0.6591 0.6591
288 0.9256 0.9242 0.9241 0.9241 0.9241
304 1.1752 1.1742 1.1742 1.1742 1.1742
320 1.3702 1.3698 1.3698 1.3698 1.3698

Pe= 5

t [day] M = 10 M = 15 M = 20 M = 25 M = 30
16 0.0771 0.0766 0.0767 0.0766 0.0766
32 0.4920 0.4916 0.4916 0.4916 0.4916
48 0.9130 0.9127 0.9128 0.9127 0.9127
64 1.2352 1.2350 1.2351 1.2351 1.2351
80 1.4468 1.4468 1.4468 1.4468 1.4468
96 1.5393 1.5394 1.5394 1.5394 1.5394

112 1.5098 1.5101 1.5101 1.5101 1.5101
128 1.3683 1.3686 1.3685 1.3685 1.3685
144 1.1391 1.1394 1.1394 1.1394 1.1394
160 0.8595 0.8597 0.8597 0.8597 0.8597
176 0.5739 0.5740 0.5740 0.5740 0.5740
192 0.3276 0.3276 0.3276 0.3276 0.3276
208 0.1597 0.1595 0.1595 0.1595 0.1595
224 0.0965 0.0962 0.0963 0.0962 0.0962
140 0.1482 0.1477 0.1478 0.1478 0.1478
256 0.3065 0.3060 0.3061 0.3061 0.3061
272 0.5465 0.5460 0.5461 0.5461 0.5461
288 0.8302 0.8298 0.8299 0.8299 0.8299
304 1.1130 1.1127 1.1128 1.1127 1.1127
320 1.3500 1.3499 1.3500 1.3499 1.3499

first-order decay constant (k), and average linear velocity of
the pore fluid (V ) on the periodic solute transport. Each
of the three parameters, namelyD, k, andV is parametri-
cally varied respectively, while the other parameters are kept
constant. It is observed in Fig. 2 that increasingD will de-
crease the amplitude of the periodic concentration wave due
to larger spreading of the solute mass. In Fig. 3, a lower
concentration is observed at the crest and trough of concen-
tration wave for largerk due to the decay effect. Examination
of Fig. 4 clearly shows that the smaller amplitude of the pe-
riodic concentration wave and lower the concentration at the
crest and trough of the concentration wave for lowerV be-

Table 3. Continued.

Pe= 25

t [day] M = 200 M = 400 M = 600 M = 800 M = 1000
16 0.0017 0.0005 0.0005 0.0004 0.0004
32 0.2427 0.2417 0.2416 0.2416 0.2416
48 0.8634 0.8627 0.8626 0.8626 0.8626
64 1.2601 1.2598 1.2597 1.2597 1.2597
80 1.4908 1.4909 1.4909 1.4909 1.4909
96 1.6008 1.6012 1.6012 1.6012 1.6012

112 1.5859 1.5866 1.5866 1.5866 1.5866
128 1.4500 1.4508 1.4508 1.4508 1.4508
144 1.2146 1.2154 1.2155 1.2155 1.2155
160 0.9170 0.9176 0.9176 0.9177 0.9177
176 0.6041 0.6044 0.6044 0.6044 0.6044
192 0.3253 0.3252 0.3252 0.3252 0.3252
208 0.1247 0.1242 0.1241 0.1241 0.1241
224 0.0338 0.0329 0.0329 0.0329 0.0329
140 0.0671 0.0660 0.0659 0.0659 0.0659
256 0.2193 0.2181 0.2180 0.2180 0.2180
272 0.4664 0.4652 0.4651 0.4651 0.4651
288 0.7693 0.7683 0.7683 0.7683 0.7682
304 1.0803 1.0796 1.0796 1.0796 1.0796
320 1.3502 1.3499 1.3499 1.3499 1.3499
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Fig. 3. Comparison of the breakthrough curves atx = 100 m for
differentk. The sinusoidally periodic input function isf (t)= 1+

sint . Parameterk is varied and other parameters are kept constant.

cause the spreading effect by dispersion processes and con-
centration reduction effect by decay process is enhanced for
long solute resident time under lowV condition.
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4.3 Evaluation of the generalized analytical solution
using numerical integration

In Sect. 4.1 we derive some specific analytical solutions us-
ing the developed generalized analytical solution (Eq. 24) by
substituting the specified time-dependent input function into
the integral expression. However, in many instances the de-
velopment of the specific analytical solution is difficult or
prohibited, therefore, the numerical integration method need
to be used to evaluate the result of Eq. (24). The reason
for using numerical integration method may be that the anti-
derivative for the specified input function is impossible, or
difficult to find or the input function is known only at cer-
tain points, such as obtained by sampling. The integral in
Eq. (24) is numerically evaluated by means of the Gaussian
quadratures using 30–61 quadrature points. A FORTRAN
subroutine DQDAG/QDAG (Visual Numerics, Inc., 1997)
based on the Gaussian rule, is readily employed to perform
the numerical integration. The accuracy of the evaluated re-
sults of Eq. (24) using numerical integration is checked by
comparing with two specific analytical solutions for expo-
nentially decaying and sinusoidally periodic input functions.
Figures 4 and 5 show the results from the numerical integra-
tion of Eq. (24) and the two specific analytical solutions for
exponentially decaying and sinusoidally periodic input func-
tions, respectively. The applicability of Eq. (24) is illustrated
by excellent agreements between the results from numerical
integration of Eq. (24) and the specific analytical solutions
for both cases (Figs. 5 and 6).

5 Conclusions

This study derives a generalized analytical solution for one-
dimensional advective-dispersive transport in finite spatial
domain subject to arbitrary time-dependent inlet boundary
condition. The analytical procedures consists of taking
Laplace transform with respect to time and generalized in-
tegral transform with respect to spatial coordinate. Three
simple time-dependent inlet conditions including constant,
exponentially decaying and sinusoidally periodic input func-
tions are considered to demonstrate the applicability of the
generalized analytical solution for development of the spe-
cific analytical solution for some specified input function.
Specifically, parametric analysis is performed to illustrate the
salient behavior of solute transport resulting from a periodic
input function. Moreover, the generalized solution which
consists of an integral representation is also evaluated by
means of the numerical integration to extend its usage. The
generalized analytical solution provides the foundation for
deriving analytical solution for some specified types of the
time-dependent inlet condition or numerically evaluating the
concentration distribution for arbitrary time-dependent inlet
boundary condition. Furthermore, the solution derived for si-
nusoidal periodic function will be added to the compendium
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Fig. 4. Comparison of the breakthrough curves atx = 100 m for
differentV . The sinusoidally periodic input function isf (t)= 1+

sint . ParameterV is varied and other parameters are kept constant.
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Fig. 5. Comparison of the breakthrough curves atx = 100 m from
the numerical integration of Eq. (24) and the specific analytical so-
lution for exponentially decaying input function (f (t)= exp(−t)).
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Fig. 6. Comparison of the breakthrough curves atx = 100 m from
the numerical integration of Eq. (24) and the specific analytical so-
lution for sinusoidal periodic input function (f (t)= 1+sint).

of the analytical solutions to the advection-dispersion equa-
tion reported by other researchers in literature. The analyt-
ical solution for finite spatial domain associated with time-
dependent inlet boundary condition should be particularly
useful for verification of the more comprehensive numerical
models, because some field numerical simulations generally
involve finite domain and time-dependent source boundary
conditions. We can also conclude that the developed gen-
eralized analytical solution serves as a useful tool for the
development of the analytical solutions for some specified
time-dependent input functions or numerical evaluation of
concentration distribution for arbitrary time-dependent input
function.

Appendix A

The derivation of the specific analytical solution

In this appendix, we present the derivation procedures of the
analytical solutions for sinusoidally periodic time-dependent
input function (f (t)=C0sin(ωt) or f (tD)=C0sin(RωL

V
tD)

using Eq. (24).

First, insertingf (tD)= C0sin(RωL
V
tD) into the Eq. (24)

yields

C(xD,tD)=C0sin(
RωL

V
tD)−

∞∑
m=1

exp

(
Pe

2
xD

)
E(ψm,xD)F (tD) (A1)

F(tD)=C0sin(ωDtD)−

(
ψ2
m

Pe
+

Pe

4

)
e
−

(
ψ2
m

Pe +
Pe
4 +kD

)
tD

tD∫
0

C0sin(ωDτ)e

(
ψ2
m

Pe +
Pe
4 +kD

)
τ
dτ (A2)

The integral representation term in Eq. (A2) can be evaluated
using the following integration formula∫
eax sinbx=

eax

a2+b2 (asinbx−bcosbx)+c (A3)

Making use of Eq. (A3) on (A2), Eq. (A2) can be expressed
as in dimensional form as

F(tD)=
ω2

D +

(
ψ2
m

Pe +
Pe
4 +kD

)2
−

(
ψ2
m

Pe +
Pe
4

)(
ψ2
m

Pe +
Pe
4 +kD

)
ω2

D +

(
ψ2
m

Pe +
Pe
4 +kD

)2
sin(ωDtD) (A4)

+

(
ψ2
m

Pe +
Pe
4

)
ωD

ω2
D +

(
ψ2
m

Pe +
Pe
4 +kD

)2
cos(ωDtD)−

(
ψ2
m

Pe +
Pe
4

)
ωD

ω2
D +

(
ψ2
m

Pe +
Pe
4 +kD

)2
e
−

(
ψ2
m

Pe +
Pe
4 +kD

)
tD

Rearranging the terms and introducing the dimensional vari-
ables, Eqs. (A1) and (A2) have the following form

C(xD,tD)=Cb [G1(x,t)+G2(x,t)−G3(x,t)] (A5)

where

G1(x,t)=

1−

∞∑
m=1

E(ψm,x)
{[
ψ2
m+

(VL
2D

)2
+
kL2

D

]
kL2

D
+
ωRL2

D

}
exp

(
V x
2D

)
[
ψ2
m+

(VL
2D

)2
+
kL2

D

]2
+

(
ωRL2

D

)2

sin(ωt)

G2(x,t)=

∞∑
m=1

E(ψm,x)
{[
ψ2
m+

(VL
2D

)2] ωRL2

D

}
exp

(
V x
2D

)
[
ψ2
m+

(VL
2D

)2
+
kL2

D

]2
+

(
ωRL2

D

)2
cos(ωt)

G3(x,t)=

∞∑
m=1

E(ψm,x)
{[
ψ2
m+

(VL
2D

)2] ωRL2

D

}
exp

(
V x
2D −

kt
R

−
V 2t
4DR −

β2
mDt

L2R

)
[
ψ2
m+

(VL
2D

)2
+
kL2

D

]2
+

(
ωRL2

D

)2
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