Hydrol. Earth Syst. Sci., 15, 65-74, 2011
www.hydrol-earth-syst-sci.net/15/65/2011/
doi:10.5194/hess-15-65-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Seasonal prediction of winter extreme precipitation over Canada by support vector regression
Z. Zeng1,*, W. W. Hsieh1, A. Shabbar2, and W. R. Burrows3
1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
2Climate Research Division, Environment Canada, Toronto, Ontario, Canada
3Meteorological Research Division, Environment Canada, Edmonton, Alberta, Canada
*now at: COSMIC Project Office, UCAR, Boulder, CO 80301, USA

Abstract. For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR) (nonlinear and linear versions), nonlinear Bayesian neural network (BNN) and multiple linear regression (MLR). The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the NiƱo-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern). The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN), and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.

Citation: Zeng, Z., Hsieh, W. W., Shabbar, A., and Burrows, W. R.: Seasonal prediction of winter extreme precipitation over Canada by support vector regression, Hydrol. Earth Syst. Sci., 15, 65-74, doi:10.5194/hess-15-65-2011, 2011.
 
Search HESS
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share