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Abstract. Estimating pesticide leaching risks at the regional
scale requires the ability to completely parameterise a pes-
ticide fate model using only survey data, such as soil and
land-use maps. Such parameterisations usually rely on a set
of lookup tables and (pedo)transfer functions, relating ele-
mentary soil and site properties to model parameters. The
aim of this paper is to describe and test a complete set of
parameter estimation algorithms developed for the pesticide
fate model MACRO, which accounts for preferential flow
in soil macropores. We used tracer monitoring data from 16
lysimeter studies, carried out in three European countries, to
evaluate the ability of MACRO and this “blind parameteri-
sation” scheme to reproduce measured solute leaching at the
base of each lysimeter. We focused on the prediction of early
tracer breakthrough due to preferential flow, because this is
critical for pesticide leaching. We then calibrated a selected
number of parameters in order to assess to what extent the
prediction of water and solute leaching could be improved.

Our results show that water flow was generally reasonably
well predicted (median model efficiency, ME, of 0.42). Al-
though the general pattern of solute leaching was reproduced
well by the model, the overall model efficiency was low (me-
dian ME =−0.26) due to errors in the timing and magnitude
of some peaks. Preferential solute leaching at early pore vol-
umes was also systematically underestimated. Nonetheless,
the ranking of soils according to solute loads at early pore
volumes was reasonably well estimated (concordance corre-
lation coefficient, CCC, between 0.54 and 0.72). Moreover,
we also found that ignoring macropore flow leads to a sig-
nificant deterioration in the ability of the model to repro-
duce the observed leaching pattern, and especially the early

breakthrough in some soils. Finally, the calibration proce-
dure showed that improving the estimation of solute transport
parameters is probably more important than the estimation
of water flow parameters. Overall, the results are encourag-
ing for the use of this modelling set-up to estimate pesticide
leaching risks at the regional-scale, especially where the ob-
jective is to identify vulnerable soils and “source” areas of
contamination.

1 Introduction

Pesticide fate modelling for estimation of leaching risks over
large areas is a challenge. It requires taking into account
complex non-linear processes such as water movement, pes-
ticide sorption and degradation in soils, and it requires esti-
mating numerous model parameters. Indeed, it is technically
impossible to measure these parameters over large areas, so
most – if not all – of them must be estimated from agro-
environmental information about soils, landscape features,
pesticide properties, crop rotations and climate that are easier
to obtain from survey data such as soil maps. Both class and
continuous statistical models can be used to relate elementary
agro-environmental conditions to model parameters (Wösten
et al., 1999; Schaap et al., 2001). These estimation proce-
dures – referred to here as “parameter estimation algorithms”
– are generally called “pedotransfer functions” (PTFs) when
they concern soil properties. The survey data used to obtain
agro-environmental conditions are derived from measured
point data, or remotely sensed spatial data, and are therefore
only estimations of their “true” spatio-temporal variations.
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So estimating pesticide leaching risks over large areas neces-
sarily relies on a complete parameter inference system (Wa-
genet and Hutson, 1996; Soutter and Pannatier, 1996; Tik-
tak et al., 2002; Leterme et al., 2007), linking data and in-
formation on scarce measurements of agro-environmental
conditions to fully parameterize a pesticide fate model. In
such complex inference systems, sources of error are numer-
ous (Dubus et al., 2003; Deng et al., 2009; Boesten, 2000;
Heuvelink et al., 2010; Leterme et al., 2007): (1) errors or
uncertainties in the estimations of the agro-environmental ge-
ographic information system; (2) errors in the parameter es-
timation algorithms; (3) failure of the model to accurately
reproduce the processes, also called structural errors; and
(4) errors arising from choices made by the modeller. De-
spite these possible sources of uncertainty, inference systems
for estimating pesticide leaching risks are expected to be-
come increasingly important tools for supporting work aimed
at reducing the diffuse pollution of water bodies by pesti-
cides. Indeed, the European “Thematic Strategy on the Sus-
tainable use of Pesticides” (Commission of The European
Communities (CEC), 2006) is expected to reinforce the need
for tools allowing users to estimate where in the landscape a
given pesticide, or pesticide program, may pose a risk. It is
thus essential to have a clearer idea of the reliability of these
inference systems.

Inference systems can be evaluated in different ways.
Their ability to predict model parameter values can be di-
rectly tested against databases of measured data (Vereecken
et al., 2010). However, the number of parameters that needs
to be tested is large, and there can be important scale dif-
ferences between the processes described in the model and
the samples used to test the inference system. Alternatively,
the inference system can be tested together with the model
for its ability to reproduce measurements of water and solute
transport in soils. This “functional” approach (Finke et al.,
1996) also implicitly accounts for parameter sensitivity: er-
rors in the estimation of the most sensitive parameters will
affect the predictions more than errors in the estimation of
less sensitive parameters.

Including a given process into pesticide risk assessments
not only requires being able to model the process at stake,
but also being able to estimate the parameters of the model
related to this process with sufficient precision. For exam-
ple, processes such as kinetic sorption are generally not con-
sidered, because little is known about how the parameters
can be estimated from survey data. Until recently, this was
also the case for preferential flow in soils. Despite an in-
creasing amount of experimental evidence proving that pref-
erential flow occurs quite frequently (Jarvis, 2007), and de-
spite a large body of literature on preferential flow modelling
(Gerke, 2006;̌Simùnek et al., 2003), the process has not been
considered in regional modelling of pesticide leaching risks.
The recently completed FOOTPRINT EU-FP6 project made
significant progress regarding our understanding of the agro-
pedological factors triggering preferential flow in soil (Jarvis,

2007), methodologies for predicting the extent of macropore
flow (Jarvis et al., 2009; Lindahl et al., 2009) and the estima-
tion of macropore flow parameters in the dual-permeability
model MACRO (Jarvis et al., 2007).

This paper presents the parameter estimation algorithms
in the FOOTPRINT inference system, including those for
macropore flow, and evaluates the ability of MACRO to pre-
dict solute leaching breakthrough when parameterised in this
way. Our aim was to assess the ability of the MACRO model
to predict solute leaching in soils when only basic site, soil
and crop properties are available and model parameters are
estimated from estimation algorithms (i.e. no calibration is
done). Although the ultimate goal is to predict regional-scale
leaching of pesticides, we focused in this study on tracer
transport, since one key question is the reliability of the pe-
dotransfer functions used to estimate transport parameters in
MACRO, especially those related to macropore flow. Predic-
tions of pesticide leaching are also very sensitive to uncer-
tainty in sorption and degradation parameters (Vanderborght
et al., 2011), which might overshadow the effects of errors
in transport parameterisation. Estimating the impact of un-
certainties in sorption and degradation on pesticide leach-
ing is therefore out of the scope of this work. We com-
pared MACRO simulations of water flow and tracer leaching
from 16 different soils against measurements from cropped
lysimeters containing undisturbed soils exposed to natural
long-term weather conditions. In a second step, we used a
simple procedure to investigate the potential for improving
the simulation results by calibrating two parameters impor-
tant for water flow simulations and two parameters impor-
tant for solute transport. We also quantified the deteriora-
tion in model predictions that occur when macropore flow
is neglected.

2 Materials and methods

2.1 Lysimeter studies and weather data

We collected 16 datasets describing lysimeter experiments
carried out in six different studies in Sweden, France and the
United Kingdom. Table 1 summarises the major characteris-
tics of the 16 lysimeter experiments, and Table 2 summarises
the properties of the different soils.

The first study (“Ultuna 1”) includes five soil types from
southern and central Sweden included in a long-term soil fer-
tility experiment (Ekebo, Fjärdingsl̈ov, Högåsa, Kungs̈angen
and Vreta soils). Detailed soil descriptions can be found
in Kirchmann et al. (1999, 2005) and Kirchmann (1991).
Replicate one-meter-long lysimeters were collected in 1999
(Djodjic et al., 2004). Bromide leaching experiments were
conducted in these soils between mid-October 2007 and De-
cember 2008, at Ultuna, Uppsala (59.82◦ N, 17.65◦ E). The
weather station was located less than a kilometre away from
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Table 1.Characteristics of the lysimeter experiments used for assessing MACRO and FOOTPRINT estimation algorithms.

Experiment location Experiment reference Time frame Duration Soils (number of replica)
[year] [days]

Ultuna 1 (Sweden) Larsbo M., unpublished data
Soils from Dojdjic et al. (2004)

2007–2008 311–434 Ekebo (5), Fjärdingsl̈ov (5), Högåsa (5),
Kungs̈angen (5), Vreta (4)

Ultuna 2 (Sweden) Bergström and Jarvis (1993) 1989–1990 307 Mellby (2)
Ultuna 3 (Sweden) Bergström et al. (2011) 2006–2008 711 Lanna (4), Nåntuna (4)
Villamblain (France) Vachier P., unpublished data 1995–1998 975 Villamblain (2 soils, 1 rep. each)
Silsoe (UK) Brown et al. (2000) 1994–1996 529 Cuckney (2), Sonning (1), Ludford (2),

Enborne (2), Isleham (2)
Brimstone (UK) Beulke et al. (2001) 1994–1995 38 Brimstone (2)

Table 2. Characteristics of the different soils. Texture classes are given according to the USDA system (“Cl” = “Clay”, “Si” = “Silt” or
“Silty”, “Sa” = “Sand” or “Sandy” and “Lo” = “Loam” or “Loamy”). Texture, organic carbon, bulk density and stone content values are the
average values of the different layers concerned weighted by their thicknesses.

Number of
Topsoil Subsoil Topsoil Bulk Stone Profile horizons

Name Soil type texture texture OC density content depth in profile

(%) (kg dm−3) (%) (m) (–)

Ekebo Oxyaquic Eutrocept1 Lo Lo 2.4 1.45 6 1.0 6
Fjärdingsl̈ov Oxyaquic1 SaLo SaLo 1.3 1.69 3 1.0 5
Högåsa Humic Dystrocryept1 LoSa Sa 1.7 1.42 0 1.0 6
Kungs̈angen Typic Haplaquept1 Cl Cl 2.1 1.31 0 1.0 3
Vreta Oxyaquic Haplocryoll1 Cl Cl 1.7 1.43 0 1.0 5
Mellby Uderic Haploboroll1 SaLo Sa 3.4 1.33 0 1.0 4
Lanna Fluventic Haplumbrept1 SiCl Cl 2.4 1.35 0 1.1 4
Nåntuna (unknown) LoSa Sa 1.2 1.43 0 1.1 5
Villamblain 1 Eutric Cambisol/Haplic Calcisols2,3 SiClLo Lo 1.4 1.16 25 1.5 4
Villamblain 2 Eutric Cambisol/Haplic Calcisols2,3 SiClLo Lo 1.4 1.16 18 1.5 5
Cuckney Argic ustipsamment1 Sa Sa 0.7 1.51 1 1.1 4
Sonning Udic paleudalf1 SaLo SaLo 1.0 1.57 33 1.1 5
Ludford Ultic haplustalf1 SaLo SaLo 1.0 1.79 0 1.1 5
Enborne Vertic fluvaquent1 SaClLo SaClLo 4.0 1.12 8 1.1 5
Isleham Terric medisaprist1 Lo SaLo 28.9 0.69 0 1.1 6
Brimstone pelo-stagnogley Denchworth series4 Cl – 3.3 1.15 0 0.3 2

1 USDA Soil Survey classification;2 World Reference base for Soil Classification;3 Soils in Villamblain present heterogeneities between and within the soil profiles;4 UK Soil
Survey Classification.

the lysimeter station. All lysimeters were under permanent
grass during the experiment.

The second study (“Ultuna 2”) comprises tracer experi-
ments using chloride-36 conducted in 1990 on one soil taken
from a site in southern Sweden (Mellby soil; Bergström et
al. (1994). Chloride-36 was applied in mid-June 1990 to
replicate lysimeters planted with spring barley (Hordeum
distichum L.). The lysimeter station was located at Ultuna,
Uppsala, and is described in detail by Bergström (1992).

The third study (“Ultuna 3”) comprises tracer experi-
ments conducted on replicate lysimeters taken from a struc-
tured clay soil (Lanna) and a sand (Nåntuna), presented
in Bergstr̈om et al. (2011). Bromide was applied 18 Oc-

tober 2006 to replicate lysimeters, and leachate was col-
lected during two years. All lysimeters, which were placed
in the lysimeter station at Ultuna, were cultivated with spring
barley, and harvested early September.

The fourth study includes two lysimeters, from the same
soil type, and was based on a bromide tracer experiment con-
ducted in Villamblain, in the “Petite Beauce” region, France
(48.01◦ N, 1.55◦ E), between 1996 and 1998. Soils were cul-
tivated with winter wheat, maize, and winter wheat dur-
ing the experiment, and bromide was applied at the end of
January 1996. It was observed in this study that bromide
had a negative effect on crop growth (but the effect was
not quantified).
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Fig. 1. Textures of the different horizons of the 16 soils used for
our study, represented over USDA Soil Texture Triangle classes:
“Cl” means “Clay” or “Clayey”; “Si” means “Silt” or “Silty”; ‘Sa”
means “Sand” or “Sandy”; and “Lo” means “Loam” or “Loamy”.

The fifth study includes replicate lysimeters of five con-
trasting soils, from a leaching study conducted at Silsoe (UK,
52.0◦ N, 0.4◦ W; Cuckney, Sonning, Ludford, Enborne and
Isleham soils; Brown et al., 2000). All lysimeters were sown
with winter wheat. Bromide was applied in November 1994,
and leaching was monitored until April 1996.

The sixth study consists of one lysimeter study from the
“Brimstone Farm dataset” (ADAS/IACR Rothamsted, Ox-
fordshire, UK; 51.65◦ N, 1.64◦ E), described by Beulke et
al. (2001). This study is shorter than the others, with bromide
applied in mid-December 1994, and monitored until 23 Jan-
uary 1995. It is also the only lysimeter study conducted with
bare soil.

As shown in Fig. 1, the soil horizons of the 16 different
soils cover a broad range of texture. Of the USDA textural
classes, only “silt”, “silt loam” and “sandy clay” are not rep-
resented. Organic carbon content in both topsoil and subsoil
horizons ranges from 0 to 29 %, with a median value of 0.6 %
for all horizons, and 1.7 % for topsoil horizons. Bulk density
ranges from 0.55 to 1.87 kg dm−3, with a median value of
1.45 kg dm−3. The mean depth of the soil profiles is 1 m.

The following data were available and were converted
to a uniform format and units: date and time at which the
leachate sample was collected; amount of leachate collected
(mm); solute mass applied and amount leached (g m−2, but
note that the36chloride used in the Mellby study was ex-
pressed in Becquerels). For the Villamblain and the Mellby
datasets, only measurements interpolated on a daily basis
were available.

Daily weather data were available for all four lysimeter
stations (Table 1). MACRO needs rainfall [mm] and, to esti-
mate potential evaporation with the Penman-Monteith equa-
tion, the daily minimum and maximum temperatures [◦C],
solar radiation [W m−2], vapour pressure [kPa] and wind
speed [m s−1]. When available, the estimated potential evap-
otranspiration was provided directly (for “Ultuna 2”, Villam-
blain, Silsoe and Brimstone). Internally, MACRO converts
daily rainfall data into hourly rainfall data. The daily rain-
fall amount is converted into a single rainfall event starting
at midnight, and with a constant intensity. This intensity is
constant all year round in MACRO. Here the default value
2 mm h−1 was used, as no information was available to esti-
mate its local value.

Previous studies comparing measured and simulated wa-
ter and solute transport in lysimeters were only available for
Lanna clay and N̊antuna sand (Jarvis, 1991; Saxena et al.,
1994). In both cases, the model used was MACRO and the
model was calibrated on the measured dataset and some pa-
rameters were measured directly. Jarvis (1991) was able to
successfully reproduce the measured water and solute break-
through, and Saxena et al. (1994) also obtained good fits to
the measured data, except during some weeks in winter, as
a treatment of snowpack was not included in the model at
that time. No goodness-of-fit statistic is available to compare
with our simulations. It is worth noting that, in this study,
we are using a different dataset for these two soils. Beulke
et al. (2001) tested uncalibrated modelling on measurements
made in Brimstone, but used a dataset of water and pesti-
cide losses to drains at the plot scale. In their study, pesti-
cide losses estimated by MACRO were in the same order of
magnitude as the measurement.

2.2 The MACRO model

MACRO is a one-dimensional dual-permeability model of
water flow and solute transport in macroporous soil. The wa-
ter and solute are partitioned between two domains: microp-
ores where equilibrium flow and transport occur, represented
by the Richards equation and the convection-dispersion
equation; and macropores where non-equilibrium gravity-
driven flow occurs, represented by a kinematic wave equa-
tion. Water exchange between micropores and macropores is
considered as an instantaneous “discharge” when the matrix
becomes over-saturated, while exchange in the other direc-
tion is modelled as a diffusive process controlled by an ef-
fective diffusion pathlength, as a surrogate parameter for the
geometry of soil structure (Gerke and van Genuchten, 1996).
A detailed description of the model is given by Larsbo et
al. (2005). We used MACRO version 5.2.
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2.3 Initial and bottom boundary conditions

Several options to describe the lower boundary condition are
available in MACRO, but we only considered a zero ten-
sion seepage surface, where only downward flow is allowed,
which is appropriate for the lysimeter experiments consid-
ered in this study. In all cases, the initial conditions in the
lysimeter experiments were unknown, since neither water
contents nor pressure heads were measured. We therefore
considered water contents at the beginning of each simula-
tion to be at equilibrium with a (virtual) water table at the bot-
tom of the soil profile. A warm-up period of real weather data
was then included between the beginning of the simulation
and the time of tracer application (14 days for Brimstone, 91
days for Ultuna 2, 145 days for Villamblain, 77 days at Silsoe
and about a year for Ultuna 1 & 3).

2.4 MACRO model parameterisation with the
FOOTPRINT estimation algorithms

2.4.1 Soil

Sixteen simulations were set up in MACRO. This latest ver-
sion includes a tool for calculating the FOOTPRINT PTFs
for soil parameters in MACRO. These PTFs make use of
basic soil properties (particle size distribution, stone and or-
ganic carbon contents, bulk density and pH) and other infor-
mation provided by the user (horizon designation according
to FAO, tillage system, and land use) to estimate physical and
hydraulic parameters in the model.

For the soil matrix, MACRO uses the van
Genuchten (1980) water retention function. The pa-
rameters of this function (the shape parametersα, n and
the saturated water contentθS) were estimated using the
continuous PTFs developed by Wösten et al. (1999) from
the HYPRES database, consideringm= 1− 1

/
n and that

the residual water contentθR is zero. The saturated water
content was corrected for stone content:

θS = θS(HYPRES)(1− fS(1− εS)) (1)

whereθS(HYPRES)[m3 m−3] is the saturated water content es-
timated with the HYPRES PTF,fS is the volumetric fraction
of stones in the soil [m3 m−3] and εS is the stone porosity
[m3 m−3]. As a unimodal function, the van Genuchten equa-
tion cannot reflect the effects of soil macropores on soil water
retention. Thus,θS is not used as a MACRO parameter. In-
stead, this “nominal” saturated water content is used together
with α andn to estimate the wilting point water content (θ at
a pressure potential of−150 m) andθS(m), the saturated water
content in the soil matrix, whenψ = ψm. The water poten-
tial defining the boundary between the micropores and the
macropores,ψm, was fixed at−10 cm, as suggested by a re-
view of the literature (Jarvis, 2007). The saturated hydraulic
conductivity of the soil matrixKS(m) (i.e. soil hydraulic con-

Fig. 2. Measured and predicted saturated matrix hydraulic con-
ductivity. Data are taken from Jarvis et al. (2002). Predicted val-
ues are calculated using Eq. (2), andθ10 andn are predicted by
HYPRES. Solid symbols represent data obtained by three of the ten
researchers.

ductivity atψm) is estimated with a new PTF:

KS(m) = CθS(m)n
l (2)

where C and l are constants derived from experimental
data from Jarvis et al. (2002) and set to 0.186 mm h−1 and
10.73 [–], respectively.θS(m) andn are the water contents at
−10 cm and van Genuchtenn parameters as predicted us-
ing the Wösten et al. (1999) pedotransfer functions (actual
measured values should not be used here). In Fig. 2, mea-
sured and predictedKS(m) values are compared. The agree-
ment must be considered satisfactory, considering the errors
involved in predictingn (Wösten et al., 1999) and also the
errors involved in the measurement ofKS(m), not in the least
because they were performed by ten different researchers
(Jarvis et al., 2002). This is illustrated by the fact that the
measurements from three of the researchers fall consistently
below the 1: 1 line (Fig. 2), despite the fact that they used
the same method.

Parameters related to soil macropores are estimated by a
combination of constants (parameters that do not vary with
site or soil properties) and class and continuous PTFs. The
volumetric macroporosity,εMA , is determined with the class
PTF presented in Table 3. This PTF was developed from
expert judgement and is based on the USDA soil texture
class, the FAO Master Horizon Designation and soil man-
agement practices.εMA is summed withθS(m) to give the to-
tal soil porosity. The effective diffusion pathlength,d, that
regulates exchange of water and solute between macropores
and micropores and the kinematic exponent,n∗, that reflects

www.hydrol-earth-syst-sci.net/16/2069/2012/ Hydrol. Earth Syst. Sci., 16, 2069–2083, 2012
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Table 3. Lookup table for estimating macroporosity in MACRO
(horizon designations are FAO Master Horizon Designations).

Soil Horizon 1Texture

Fine Medium Coarse

Topsoil 2Undisturbed 0.050
(mineral) 3AT’ 0.050

4AP’ 0.030 0.040 0.050

Subsoil 5Upper “B” or “E” 0.160 0.160 0.050
(mineral) 6Lower “B” or “E” 0.008 0.008 0.050

“BC’ 0.002’ 0.004 0.040
“C” 0.002 0.004 0.030

Organic “O” or “H” 0.050

1 “Fine” is clay, silty clay, silty clay loam in the USDA texture triangle; “Coarse” is
sand and loamy sand; “Medium” is all other classes.2 Perennial crops, i.e. grassland,
vines, orchards, olives.3 Intensively (secondary) tilled uppermost soil layer.4

Ploughed but not secondary tilled.5 Mid-point depth of horizon< 50cm.6 Mid-point
depth of horizon> 50cm.

the size distribution, tortuosity and connectivity of macro-
pores, and controls flow rate in the macropore domain are
obtained from the class PTF presented in Table 4, which dis-
tinguishes four classes of susceptibility to macropore flow.
The susceptibility to macropore flow of each horizon is de-
termined with a decision tree, described in detail and success-
fully tested by Jarvis et al. (2009). The decision tree is based
on USDA soil textural classes, FAO Master Horizon desig-
nations, tillage characteristics (no or reduced tillage, con-
ventional tillage/ploughing or harrowing) and organic carbon
content. The decision tree also makes use of a subsidiary de-
cision tree to predict the abundance of large earthworm bio-
pores (Lindahl et al., 2009) from soil climate, land use, tex-
ture class and the presence of limiting factors (such as hori-
zons without pedogenetic features or with coarse texture, wa-
ter tables, low pH and high bulk density). The MACRO pa-
rameter values associated with each class (Table 4) were set
according to expert judgement based on extensive experience
from calibrating and validating the model against experimen-
tal data (e.g. Jarvis, 2007; Köhne et al., 2009a, b).

A simple expression for macropore saturated hydraulic
conductivityKS(MA) can be derived from the “capillary bun-
dle” model of soil macropore hydraulic properties described
in Jarvis (2008):

KS(MA) = (BεMA )
/
n∗ (3)

where “B” is a composite “matching factor” accounting for
both physical constants and the geometry of the functional
macropore system, which was set to 6000 mm h−1.

Finally, as a special case, hydraulic parameters for
permeable rock substrates (R horizons, which in our
study only occurred at the Villamblain site) are set to
fixed values, assuming a high potential for macropore
flow (i.e. class IV), as found by Roulier et al. (2006):
d = 150 mm;KS(MA) = 30 mm h−1; KS(m) = 0.04 mm h−1;

Table 4. Class pedotransfer functions for soil structure-related pa-
rameters. The preferential flow class is determined using the deci-
sion tree presented in Jarvis et al. (2009).

Macropore
Flow Class

1Effective
Diffusion
Pathlength,
d [mm]

Kinematic
Exponent

,

n* [–]

I (none) 1 6
II (weak) 15 4
III (moderate) 50 3
IV (strong) 150 2

1 The effective diffusion pathlength (d) is set to 3 mm in the
uppermost intensively tilled layer in arable soil independent
of class.

θS(m) = 0.1 m3 m−3; α = 0.0004 cm−1; n = 1.8; n∗ = 2;
εMA = 0.01 m3 m−3.

2.4.2 Crop

Crop parameters were defined using the class estimation al-
gorithms defined in FOOTPRINT (Jarvis et al., 2007). These
estimation algorithms classify crops into nine groups of an-
nual crops and three groups of perennial crops. The lysimeter
studies were conducted under either bare soil, wheat, barley,
maize or grass, which represent only three of these groups
(Table 5). The crop parameters were chosen according to FO-
CUS (2001), except for parameters related to drought toler-
ance, which were chosen according to Allen et al. (1998). In
the FOOTPRINT inference system, the crop-specific max-
imum rooting depth is reduced by the presence of limit-
ing soil factors: “C” or “R” FAO master horizon designa-
tions; pH≤ 4.5; USDA sand and loamy sand texture classes
with less than 0.2 % organic carbon; a stone content larger
than 20 % or a bulk density larger than 1.65 kg dm−3 in the
subsoil. The remaining crop parameters concern crop devel-
opment stages. In FOOTPRINT, they are set according to
a database of crop development stages available for each
of sixteen climate zones in Europe. In this study, however,
crop development stages such as emergence day and har-
vest day were set according to the observed dates in each
lysimeter study.

2.4.3 Solute

Apart from the effective diffusion pathlength, solute trans-
port parameters were set to constants (identical for all
soils). The diffusion coefficient in water was set to
1.9× 10−9 m2 s−1. The mixing depth, which controls rout-
ing of solutes into macropores at the soil surface, was set
to 1 mm. Anion exclusion was not considered. The matrix
dispersivity was set to 3.4 cm, which is the mean value for
a sub-set of 116 samples taken from the Vanderborght and
Vereecken (2007) database, for experiments carried out at
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Table 5.Crop parameters in the FOOTPRINT inference system used in this study.

Parameters Crop groups Parameters Crop groups Constant all

A (Cereals) F (Maize) Grass Parameters groups

LAI Max 5 5 LAIC 5 x1 1.6
LAI Har 1 2 x2 0.3
Drought tolerance 65% 65% Drought tolerance 65% LAIMin sp 0.01
β 0.2 0.2 β 0.2 LAIMin sp 1.0
Rmax 1.1 1.1 RDepth 0.8 RInit sp 0.01
CANCAP 2 3 CANCAP 2 RInit au 0.2
ZALP 1.0 1.5 ZALP 1.0 CRAir 0.05

LAI Max is the maximum leaf area index; LAIHar is the green leaf area index at harvest; “Drought tolerance” is the % of extractable micropore
water exhausted before reduction in transpiration occurs, and it is used to calculate the critical tension for transpiration reduction (WATEN);β

is the transpiration adaptability factor;Rmax is the maximum root depth [m]; CANCAP is the maximum interception capacity [mm];ZALP is
the ratio evaporation of intercepted water to transpiration; LAIC is the leaf area index of permanent crops;RDepth is the root depth for
permanent crops.x1 andx2 are the leaf development factor, for growth and senescence, respectively; LAIMin sp and LAIMin au are the leaf area
index on specified day for spring and autumn crops, respectively;RInit sp andRInit au are the root depth on the intermediate crop development
stage between emergence and maximum leaf area for spring and autumn crops, respectively; CRAir is the critical air content for transpiration
reduction [m3 m−3].

steady flow rates of less than 1 mm h−1, which should ex-
clude the influence of dispersion due to macropore flow. As
macropore flow is explicitly accounted for in MACRO, and
results in a higher apparent dispersivity, it is necessary to ex-
clude its influence when estimating matrix dispersivity. Fi-
nally, the fraction of solute taken up by crop roots with the
water was set to 1 (i.e. completely passive uptake).

2.5 Analyses of modelling results

2.5.1 Bulking replicated measurements

Water outflow and solute leaching were in most cases mea-
sured in several replicate lysimeters of the same soil. How-
ever, only one set of average physico-chemical properties
was available for each soil type. Thus, only one set of
MACRO parameters and one prediction could be obtained
for each soil type. As a consequence, the measurements in-
clude a local variability that simulations cannot reflect. To
overcome this, we bulked the replicated measurements for
each soil type and calculated average measured water and
solute outflows to allow sound statistical comparisons of
measurements and simulations.

Before any analysis of the results, the amount of water
drained at the outlet of lysimeters was transformed into pore
volumes. This non-dimensional unit allows comparing the
amount of water leached in soil profiles with different prop-
erties. Sensu stricto pore volumes should be calculated as the
amount of water drained divided by the product of water con-
tent and soil profile height. As no information was available
on soil profile water contents, we have instead considered
pore volumes as the amount of water drained divided by the
product of porosity and soil profile depth. The porosity of
each horizon was calculated from the horizon bulk density
and an estimated particle density.

2.5.2 Statistical measures of model “goodness of fit”

We assessed the agreement between measured and simulated
water flows with the Nash-Sutcliffe model efficiency (Schae-
fli and Gupta, 2007; Nash and Sutcliffe, 1970):

NSE= 1−

∑n
t=1

(
xobs,t − xsim,t

)2∑n
t=1

(
xobs,t − xobs,t

)2
(4)

wherexobs,t andxsim,t are thet-th observed and simulated
values, respectively.

In contrast to tracers, pesticides are degraded. Because
of this, we are most interested in the ability of the model
to reproduce early tracer breakthrough. Accurate prediction
of early solute breakthrough is dependent on the ability of
the model to accurately simulate water flows soon after so-
lute application. This in turn requires knowledge of the ini-
tial hydrological conditions, which in our case were unavail-
able. We have thus compared simulated and measured ac-
cumulated amounts of solute leached (expressed as a frac-
tion of the applied amount) at 0.1, 0.2 and 0.3 pore volumes
(PV) of water drained. These values were chosen because
(1) not all lysimeter experiments had more than 0.3 pore vol-
umes drained, (2) peak solute leaching occurs before 1 pore
volume of drainage in soils exhibiting preferential flow or
large dispersion and (3) the half-lives of most registered pes-
ticides are much shorter than the time required for 1 pore
volume of water to pass through a one-meter soil profile,
even in relatively wet climates. Preferential solute leaching is
“event-driven”, which makes the Nash-Sutcliffe model effi-
ciency very sensitive to even slight errors in timing. Nolan et
al. (2009) proposed a “refined lack-of-fit statistic” that mea-
sures the ability of a model to predict peak concentrations
and takes into account possible shifts in time (and scale).
It is unfortunately not easily applicable here, as not all our
simulations exhibit clearly defined solute leaching peaks. We
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therefore assessed the agreement between measured and pre-
dicted accumulated solute loads at 0.1, 0.2 and 0.3 PV with
the concordance correlation coefficient (Lin, 1989), referred
to here as CCC, an estimator that takes into account both
scale and location departure from the one-to-one measured
versus predicted line (i.e. a systematic bias or a high disper-
sion, respectively). We have used the CCC calculation im-
plemented in the R package epiR (Stevenson et al., 2009;
R. Development Core Team, 2011). The formula of the CCC
for two variablesx andy is

ρ̂C =
2Sxy

S2
x + S2

y + (x− y)2
(5)

with S2
j = (1/n)

∑n
i=1

(
ji − j

)2
,j = x,y and Sxy =

(1/n)
∑n
i=1 (xi − x)(yi − y) andn the number of samples.

The ability of the model to accurately predict water out-
flow and solute loads is particularly important in the con-
text of registration and risk assessment, because the leachate
concentration is a key “end-point”. For risk management, an
alternative criterion to the absolute concentration would be
whether the model correctly identifies the sources of diffuse
pollution in the landscape (i.e. to identify appropriate mitiga-
tion measures). It is then no longer absolute values that are
important, but rather the ranking of soil types with respect
to solute leaching. We have thus also computed the ranking
of each soil according to the measured and predicted accu-
mulated solute loads at 0.1, 0.2 and 0.3 pore volumes and
calculated the CCC on these ranks.

2.5.3 Benchmarking: does macropore flow matter?

Statistical measures of the agreement between measured and
simulated time series variables, such as the Nash-Sutcliffe
model efficiency, may be difficult to interpret. Seibert (2001)
recommended “benchmarking” predictions against a simpler
model, to assess the relative improvement provided by a
more complex model. In this study, we compare predictions
of the full model with MACRO simulations parameterized
in such a way that macropore flow is eliminated. This is
done by setting the effective diffusion pathlength to 1 mm,
which ensures extremely rapid equilibration between the two
flow domains. This effectively reduces the dual-permeability
model to a single-domain flow and transport model (the
Richards equation coupled to the advection-dispersion equa-
tion). In this way, we can test whether the uncertainty in es-
timating macropore flow parameters by pedotransfer func-
tions outweighs the errors in model predictions introduced
by neglecting macropore flow.

2.6 Calibration

A simple way to assess parameterisation errors is to perform
a calibration of the model parameters, by testing different pa-
rameter sets and comparing them to the measured values (in-
verse modelling). The extent to which calibrated parameter

sets improve the modelling, as compared to non-calibrated
simulations, gives us an idea of how good or bad the base
parameterisation is. It helps us to know which parameters
should be better predicted to achieve better simulations. The
strategy is nevertheless somewhat limited, because, (a) due
to resource limitations, it was not possible for us to calibrate
all the important MACRO parameters, and (b) several pa-
rameters may have similar impacts on water flow or solute
transport, which leads to equifinality (Beven, 1993).

The calibration procedure was conducted in two steps.
Two parameters were calibrated in the first step to im-
prove water flow modelling, and two other parameters
were calibrated in the second step to improve solute
transport modelling.

2.6.1 Calibrating crop parameters that impact the
water balance

A first analysis of the results revealed that simulations of
water outflows could be improved with a better parameter-
isation of some crop parameters. The maximum root depth
Rmax and the uptake compensation factorβ, which reflects
crop drought tolerance, were optimised because of their ex-
pected impact on the overall water balance (i.e. because they
are both sensitive and uncertain). Whenβ is 1, there is no
water uptake compensation, and whenβ is 0, there is a com-
plete compensation. Five values ofRmax were tested, from
0.30 to 1.10 m (or to the lysimeter depth if the lysimeter was
shorter), and five values ofβ (from 0 to 1), giving 25 different
parameter combinations.

Additional changes were made to the parameterisation of
the “Ultuna 1” lysimeters. For practical reasons, the FOOT-
PRINT estimation algorithms consider grass as a perennial
crop. This means that, for the non-calibrated simulations,
the root depth and leaf area are constant all the year round,
and MACRO simulates crop transpiration as soon as temper-
atures rise above zero. But grass growing in Nordic coun-
tries (and elsewhere) is affected by winter frost burns, and its
green leaf area gradually decreases in the autumn, and grad-
ually increases in the spring, when temperatures are above
6◦C (Persson, 1997). For this reason, in the calibrated simu-
lations, the grass in the Ultuna lysimeters has been consid-
ered as an annual crop, with an annual cycle of leaf area
development (emergence on day 364, a linear increase of
leaf area until day 90, maximum leaf area on day 180 and
“harvest” on day 363).

The optimal parameter combination was chosen as the
one with the best Nash-Sutcliffe model efficiency. This was
calculated on accumulated water outflow rather than out-
flows for each sampling period, since the results were then
less sensitive to periods where some water flow is pre-
dicted by MACRO while the measured water flow is zero,
or vice versa.
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Fig. 3. Examples of measured versus simulated water and solute flows, for one soil that is “rather well” simulated (Cuckney) and one that is
“rather poorly” simulated (Fj̈ardingsl̈ov). Solid lines are measured values and dashed lines are simulated values.

2.6.2 Calibrating solute transport

Based on the calibrated simulations of water outflow, a sec-
ond optimisation was conducted for solute transport. Prelimi-
nary tests showed that the extent of solute uptake by the crop
was an important determinant of the overall tracer balance.
In a few cases, we also noted that, while the water balance
was well simulated, the simulated bulk matrix solute trans-
port was apparently slower than the measured (see Sect. 3.1).
For this reason, we also optimised the anion exclusion factor
in the model (θae). Internally, MACRO defines a “mobile wa-
ter content” (θmi(m)) that is calculated asθmi(m) = θmi − θae,
if θae< θmi and θmi(m) = 0 if θae≥ θmi (Larsbo and Jarvis,
2003, p. 29). Anion exclusion is not the only process that can
explain fast solute transport in the matrix. The presence of
immobile water and heterogeneous flow in the matrix may
produce similar effects. To some extent, it should be possible
to account for this by calibrating the matrix dispersivity, but
the lack of resident concentration data and thus the likelihood

of equifinality persuaded us to keep the analysis simple and
focus only on anion exclusion. Five values of the solute up-
take concentration factor (from 0 to 1) and ten values of the
anion exclusion factor were tested (from 0 to the water con-
tent at wilting point). This gave 50 different parameter com-
binations. The optimal parameter combination (from the 50
tested) was chosen as the one with the best model efficiency
on time series of accumulated solute leaching.

3 Results and discussion

3.1 Uncalibrated modelling

Model efficiencies for water flow are given in Table 6. For
uncalibrated simulations, the median efficiencies are 0.42
for water outflows and 0.67 for the accumulated water out-
flows respectively, but large differences existed between
lysimeters. Figure 3 gives an example of an experiment that
is rather well simulated (Cuckney), and one that is rather
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Fig. 4. Left part: measured versus simulated accumulated solute loads leached at 0.1 (upper part) and 0.2 (lower part) pore volumes (PV),
expressed as a fraction of the applied solute [–]. Right part: soil ranks according to the same criterion. At 0.2 pore volume, Villamblain 1 and
2 soils are not represented, because neither the simulation nor the measurements reached that pore volume.

poorly simulated (Fj̈ardingsl̈ov). In the Supplement, Table S1
presents the total rainfall amount, percolation and evapotran-
spiration for each non-calibrated simulation, and Figs. S1 to
S16 present their simulated and measured water and solute
flow. While most English soils were well simulated, the Vil-
lamblain soil and some Swedish soils were not. Model effi-
ciencies were low in Ḧogåsa and Mellby soils, for instance,
but very good for Enborne and Brimstone. Visual examina-
tion of the bulked simulation results for each soil type (see
the Supplement) revealed that the model sometimes failed to
reproduce the first peak of water outflow, especially for the
experiments conducted at Silsoe, but also for some of the
Swedish soils (e.g. Fjärdingsl̈ov, see Fig. 3). This is prob-
ably due to the lack of measured data to identify the cor-
rect initial condition in the simulation (Zehe et al., 2007).

In other cases (Vreta, Mellby), the total drainage was some-
times overestimated, presumably due to an underestimation
of transpiration. For the Isleham peaty soil and Kungsängen,
the water flow was accurately modelled the first year, but not
the second year.

Figure 4 shows measured versus simulated solute leaching
at 0.1 and 0.2 pore volumes, expressed in absolute terms and
as ranks, respectively. The trends observed at 0.3 pore vol-
umes are similar to those seen at 0.2 pore volumes (although
comparisons are made for only 11 soils) and are therefore not
shown. It is striking that the simulated solute load leached
at 0.1 and 0.2 pore volume was systematically underesti-
mated (CCC = 0.33 and 0.35, respectively). Although not as
strongly underestimated, solute load was still not well sim-
ulated at 0.3 pore volumes (CCC = 0.50). If the comparison
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Table 6.Model efficiencies of simulated water flow (WF), accumulated water volume (WC), solute load (SL) and accumulated solute load
(SL), without calibration, and with 2 water-related crop parameters (β andRmax) and 2 solute-related parameters (solute uptake concentration
and anion exclusion factors) optimized. The differences in model efficiency between the 2 methods are also given. Model efficiencies were
calculated after averaging replicated measurements, on the complete time series.

No calibration Crop/water parameter calibrated Differences

Soil profile WF WC SL SC WF WC SL SC WF WC SL SC

Ekebo 0.41 0.97 −0.28 −0.10 0.07 0.97 −0.16 0.89 −0.34 0.00 0.12 0.99
Fjärdingsl̈ov −0.03 0.89 −0.68 0.55 0.81 0.98 −0.99 0.78 0.84 0.09 −0.31 0.23
Högåsa −3.94 −1.39 −2.83 0.00 −3.66 −1.04 −2.52 0.12 0.28 0.35 0.31 0.12
Kungs̈angen 0.14 0.67 −0.79 −0.36 0.15 0.86 −2.27 0.77 0.01 0.19 −1.48 1.13
Vreta −1.12 0.90 −0.64 −0.44 −0.73 0.94 −0.33 0.82 0.39 0.04 0.31 1.26
Mellby −1.24 −3.23 −0.40 −1.13 −1.24 −3.23 −0.65 0.68 0.00 0.00 −0.25 1.81
Lanna 0.66 0.96 −0.02 −2.00 0.67 0.97 0.19 0.64 0.01 0.01 0.21 2.64
Nåntuna 0.59 0.91 −0.10 0.82 0.65 0.98 0.01 0.87 0.06 0.07 0.11 0.05
Villamblain −0.11 −0.79 −0.05 −0.99 −0.25 0.69 −0.22 0.32 −0.14 1.48 −0.17 1.31
Villamblain −0.04 −1.08 −0.10 −1.14 0.1 0.17 −1.52 0.2 0.14 1.25 −1.42 1.34
Cuckney 0.62 0.48 −0.01 0.59 0.75 0.79 −0.3 0.84 0.13 0.31 −0.29 0.25
Sonning 0.42 0.67 −0.22 0.75 0.67 0.89 −0.37 0.88 0.25 0.22 −0.15 0.13
Ludford 0.51 0.48 −0.94 0.47 0.57 0.75 −1.32 0.68 0.06 0.27 −0.38 0.21
Enborne 0.77 0.88 −0.24 −2.77 0.84 0.92 −1.46 −1.13 0.07 0.04 −1.22 1.64
Isleham 0.71 0.31 −0.28 −0.62 0.71 0.31 −0.23 −0.33 0.00 0.00 0.05 0.29
Brimstone 0.77 0.98 0.69 0.90 0.77 0.98 0.53 0.97 0.00 0.00−0.16 0.07

is made on rankings, the results are much better (Fig. 4), al-
though still far from being perfect (CCC = 0.54, 0.72 and
0.65 for PV = 0.1, 0.2 and 0.3, respectively). The systematic
underestimation of the amount of solute leached at 0.1 and
0.2 pore volumes may be explained by an underestimation
of macropore flow intensity by our parameterisation algo-
rithms. It may also be explained by the internal conversion
of daily rainfall data into hourly rainfall data. The default av-
erage rainfall intensity we have used (2 mm h−1) may be
inappropriate, as intense rainfall events are more likely to
generate preferential flow, and thus early solute breakthrough
(McGrath et al., 2009).

3.2 Effect of calibration

Table 6 shows, as expected, that calibrating two parame-
ters controlling water uptake by crops improved significantly
the simulations of water flows for those cases where results
were poor without calibration (e.g. the Fjärdingsl̈ov, Högåsa,
Kungs̈angen and Vreta soils in Sweden and Cuckney, Son-
ning and Ludford soils in the UK). In the case of Ekebo and
one of the Villamblain lysimeters, the simulation of water
flow became worse after the calibration (Table 6). This is be-
cause the best parameter combination was chosen according
to the model efficiency calculated on accumulated water out-
flows. It is also quite clear that modelling grass as an annual
crop rather than a perennial (the default in the crop estima-
tion algorithms) better corresponds to Swedish conditions.
In several cases, improving the simulation of water outflows

also improved the simulation of solute leaching (Table 6).
But in other cases, the simulations became worse. Figures 5
and 6 show the effect of the calibration procedure on the con-
cordance correlation coefficients between measured and sim-
ulated solute loads and ranked solute loads at 0.1, 0.2 and
0.3 pore volumes. It is clear from these figures that calibrat-
ing the two crop parameters only marginally improved the
modelling of solute transport.

Calibration of both water uptake and solute transport pa-
rameters improved the simulation results for absolute load-
ings (Fig. 5), but only marginally improved the predictions
of the ranking of soils according to the fraction of solute
leached at different pore volumes (Fig. 6). The predicted
ranking is even slightly worse at 0.3 pore volumes. This is
due to the fact that the calibration was done on the complete
breakthrough curve, and not just on the solute load at a given
pore volume.

3.3 Significance of calibration

Calibrated values forRmax were significantly smaller than
the values estimated from the lookup tables for nine lysime-
ters (from 0.3 to 0.5 m instead of 1.1 m), and slightly smaller
(around 0.8 m instead of 1.1 m) for four lysimeters. We do
not know whether or not this reflects a real problem with
the estimation ofRmax, an artefact due to the experimen-
tal setting, or that calibrated values compensate for errors
in other parameters that are important for water flow. The
change inRmax does not appear related to soil properties.
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Fig. 5.Concordance correlation coefficient (CCC) of measured ver-
sus simulated accumulated solute loads leached at 0.1, 0.2 and 0.3
pore volumes for different calibration methods: no calibration (only
pedotransfer functions); after calibration of 2 water-related crop pa-
rameters; after calibration of 2 additional solute-related crop and
soil parameters. Darker bars represent simulations where solute
macropore flow has been “switched-off”, and grey bars represent
(standard) simulations where macropore flow parameters have been
parameterised according to the pedotransfer functions. Some soil
profiles are not included in the CCC calculation at 0.2 and 0.3 pore
volumes, because not all the lysimeters had this much drainage.

The calibratedβ parameter was higher than the values esti-
mated from the lookup tables in nine lysimeters (from 0.5 to
1 instead of 0.2), and lower in seven (0 instead of 0.2). Again,
no relationship was found between this change and soil prop-
erties, or with the change inRmax, despite the fact thatβ and
Rmax may have similar effects on the water balance.

In nine lysimeters, solute transport was improved if the
fraction of tracer taken up by the crop was decreased (to
0.5 or 0), but this finding could not be related to any soil
properties. The results are more interesting for anion exclu-
sion, which was set to zero in the parameter scheme with-
out calibration. Most simulations were improved when the
excluded water content was increased (less than 10 % for
seven soils, and more than 10 % for eight others, with a
maximum value of 20 %). The estimated “optimal” values
of the excluded water content were strongly correlated with
clay content (RPearson= 0.86) and the estimated water con-
tent at wilting point (θWILT ; RPearson= 0.90), with an aver-
age value equal to 0.55θWILT . Although we had bounded the
range of possible values for the excluded water content be-
tween 0 andθWILT , we think this result reflects a real trend of

Fig. 6. Concordance correlation coefficient of the measured ver-
sus simulatedsoil ranks according to the accumulated solute loads
leached at 0.1, 0.2 and 0.3 pore volumes for different calibration
methods: no calibration (only pedotransfer functions); after cali-
bration of 2 water-related crop parameters; after calibration of 2
additional solute-related crop and soil parameters. Darker bars rep-
resent simulations where solute macropore flow has been switched-
off, and grey bars represent (standard) simulations where macropore
flow parameters were set according to the pedotransfer functions.
Some soil profiles are not included in the CCC calculation at 0.2
and 0.3 pore volumes, because not all the lysimeters had this much
drainage.

either faster bulk transport of the tracer in soils with more
clay (and thus a higherθWILT ) due to anion exclusion or
mobile-immobile preferential flow in the soil matrix. Alletto
et al. (2006) found, for example, rather large immobile water
contentsθim

/
θ (up to 90 %) in soils very similar to those of

Villamblain.

3.4 Does macropore flow matter?

Figures 5 and 6 clearly show that, despite the additional un-
certainties involved in simulating macropore flow, neglect-
ing this process leads to worse predictions, especially at
0.1 PV without calibration. This result is worth noting con-
sidering that not all soils may be prone to preferential flow.
Overall, the effect of preferential flow is significant, despite
the fact that it may be negligible in some lysimeters. Ad-
ditionally, not all weather data series include rainfall events
likely to trigger preferential flow, especially in the criti-
cal period soon after solute application (McGrath et al.,
2009). The results also show that calibration of water up-
take and solute transport parameters can partly compensate
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for neglecting macropore flow at later times (PV = 0.2 and
0.3, see Figs. 5 and 6).

4 Conclusions

Predicting solute transport, and especially early solute break-
through due to preferential flow, without measuring any
model parameters and without calibration, is a challenge.
Nonetheless, although model efficiencies were quite low, we
consider our results promising, considering how variable and
non-linear water and solute transport can be, especially in
the presence of macropore flow. Overall, our results show
that we generally strongly underestimate the amount of so-
lute leached in the first 0.3 pore volumes drained. We can-
not say whether this is due to model structural errors or pa-
rameter errors, but previous experience with MACRO has
not indicated any systematic tendency to underestimate the
strength of macropore flow (K̈ohne et al., 2009a, b), which
suggests that the latter probably dominated. Also, we cannot
completely exclude the influence of measurement errors. For
example, some side-wall flow may have occurred in some
lysimeters and disturbance to the structure caused during
their extraction may have accelerated transport. Root devel-
opment may also be limited or influenced by the lysimeter
wall and the bromide tracer may also be toxic to crops when
applied at high concentrations (Flury and Papritz, 1993; Ob-
servations on Villamblain lysimeters). Despite the fact that
preferential flow was not expected in all soils and climate
series, we show that not accounting for this process strongly
and negatively affects the modelling results. Clearly, ignoring
preferential flow can lead to strong biases in spatial patterns
of solute leaching predicted at large scales. This conclusion
stresses the importance of preferential flow in soils, and the
need for improved pedotransfer functions to estimate prefer-
ential flow parameters. Finally, although the absolute values
of solute leaching were poorly predicted by the model, the
ranking of soil types according to this variable was generally
much more reliable and was not greatly improved by calibra-
tion. This finding shows that the results from blind param-
eterisation of the MACRO model can be used to assess the
relative vulnerability of soils to solute leaching in catchment
and regional-scale assessments.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/2069/2012/hess-16-2069-2012-supplement.pdf.
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