Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 16, 267-285, 2012
http://www.hydrol-earth-syst-sci.net/16/267/2012/
doi:10.5194/hess-16-267-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
02 Feb 2012
Hydrological response of a small catchment burned by experimental fire
C. R. Stoof1,2,3,4, R. W. Vervoort3, J. Iwema5, E. van den Elsen6, A. J. D. Ferreira2, and C. J. Ritsema1,6 1Land Degradation and Development Group, Wageningen University, Wageningen, The Netherlands
2CERNAS, Escola Superior Agrária de Coimbra. Bencanta, 3040-316 Coimbra, Portugal
3Faculty of Agriculture, Food & Natural Resources, The University of Sydney, Sydney, Australia
4Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
5Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, The Netherlands
6Alterra Green World Research, Wageningen UR, Wageningen, The Netherlands
Abstract. Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84%) and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships – although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058), and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

Citation: Stoof, C. R., Vervoort, R. W., Iwema, J., van den Elsen, E., Ferreira, A. J. D., and Ritsema, C. J.: Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 16, 267-285, doi:10.5194/hess-16-267-2012, 2012.
Publications Copernicus
Download
Share