Journal Metrics

  • IF value: 3.642 IF 3.642
  • IF 5-year<br/> value: 3.916 IF 5-year
    3.916
  • SNIP value: 1.443 SNIP 1.443
  • IPP value: 3.250 IPP 3.250
  • SJR value: 1.852 SJR 1.852
  • h5-index value: 49 h5-index 49
Hydrol. Earth Syst. Sci., 16, 3647-3658, 2012
www.hydrol-earth-syst-sci.net/16/3647/2012/
doi:10.5194/hess-16-3647-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Global runoff anomalies over 1993–2009 estimated from coupled Land–Ocean–Atmosphere water budgets and its relation with climate variability
S. Munier1, H. Palanisamy1, P. Maisongrande1, A. Cazenave1, and E. F. Wood2
1Laboratoire d'études en géophysique et océanographie spatiales, UMR5566, LEGOS/CNES/CNRS/IRD/UPS, Toulouse, France
2Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

Abstract. Whether the global runoff (or freshwater discharge from land to the ocean) is currently increasing and the global water cycle is intensifying is still a controversial issue. Here we compute land–atmosphere and ocean–atmosphere water budgets and derive two independent estimates of the global runoff over the period 1993–2009. Water storage variations in the land, ocean and atmosphere reservoirs are estimated from different types of data sets: atmospheric reanalyses, land surface models, satellite altimetry and in situ ocean temperature data (the difference between altimetry based global mean sea level and ocean thermal expansion providing an estimate of the ocean mass component). These data sets are first validated using independent data, and then the global runoff is computed from the two methods. Results for the global runoff show a very good correlation between both estimates. More importantly, no significant trend is observed over the whole period. Besides, the global runoff appears to be clearly impacted by large-scale climate phenomena such as major ENSO events. To infer this, we compute the zonal runoff over four latitudinal bands and set up for each band a new index (combined runoff index) obtained by optimization of linear combinations of various climate indices. Results show that, in particular, the intertropical and northern mid-latitude runoffs are mainly driven by ENSO and the Atlantic multidecadal oscillation (AMO) with opposite behavior. Indeed, the zonal runoff in the intertropical zone decreases during major El Niño events, whereas it increases in the northern mid-latitudes, suggesting that water masses over land are shifted northward/southward during El Niño/La Niña. In addition to this study, we propose an innovative method to estimate the global ocean thermal expansion. The method is based on the assumption that the difference between both runoff estimates is mainly due to the thermal expansion term not accounted for in the estimation of the ocean mass. We find that our reconstructed thermal expansion time series compares well with two existing data sets in terms of year-to-year fluctuations but somewhat differs on longer (multi-year) time scales. Possible explanations include non negligible steric variations from the deep ocean.

Citation: Munier, S., Palanisamy, H., Maisongrande, P., Cazenave, A., and Wood, E. F.: Global runoff anomalies over 1993–2009 estimated from coupled Land–Ocean–Atmosphere water budgets and its relation with climate variability, Hydrol. Earth Syst. Sci., 16, 3647-3658, doi:10.5194/hess-16-3647-2012, 2012.
 
Search HESS
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share