Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 17, 4481-4502, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
13 Nov 2013
Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation
S. Hwang and W. D. Graham Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
Water Institute, University of Florida, Gainesville, FL, USA
Abstract. There are a number of statistical techniques that downscale coarse climate information from general circulation models (GCMs). However, many of them do not reproduce the small-scale spatial variability of precipitation exhibited by the observed meteorological data, which is an important factor for predicting hydrologic response to climatic forcing. In this study a new downscaling technique (Bias-Correction and Stochastic Analog method; BCSA) was developed to produce stochastic realizations of bias-corrected daily GCM precipitation fields that preserve both the spatial autocorrelation structure of observed daily precipitation sequences and the observed temporal frequency distribution of daily rainfall over space.

We used the BCSA method to downscale 4 different daily GCM precipitation predictions from 1961 to 1999 over the state of Florida, and compared the skill of the method to results obtained with the commonly used bias-correction and spatial disaggregation (BCSD) approach, a modified version of BCSD which reverses the order of spatial disaggregation and bias-correction (SDBC), and the bias-correction and constructed analog (BCCA) method. Spatial and temporal statistics, transition probabilities, wet/dry spell lengths, spatial correlation indices, and variograms for wet (June through September) and dry (October through May) seasons were calculated for each method.

Results showed that (1) BCCA underestimated mean daily precipitation for both wet and dry seasons while the BCSD, SDBC and BCSA methods accurately reproduced these characteristics, (2) the BCSD and BCCA methods underestimated temporal variability of daily precipitation and thus did not reproduce daily precipitation standard deviations, transition probabilities or wet/dry spell lengths as well as the SDBC and BCSA methods, and (3) the BCSD, BCCA and SDBC methods underestimated spatial variability in daily precipitation resulting in underprediction of spatial variance and overprediction of spatial correlation, whereas the new stochastic technique (BCSA) replicated observed spatial statistics for both the wet and dry seasons. This study underscores the need to carefully select a downscaling method that reproduces all precipitation characteristics important for the hydrologic system under consideration if local hydrologic impacts of climate variability and change are going to be reasonably predicted. For low-relief, rainfall-dominated watersheds, where reproducing small-scale spatiotemporal precipitation variability is important, the BCSA method is recommended for use over the BCSD, BCCA, or SDBC methods.

Citation: Hwang, S. and Graham, W. D.: Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation, Hydrol. Earth Syst. Sci., 17, 4481-4502, doi:10.5194/hess-17-4481-2013, 2013.
Publications Copernicus