Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5361-2014
https://doi.org/10.5194/hess-18-5361-2014
Research article
 | Highlight paper
 | 
20 Dec 2014
Research article | Highlight paper |  | 20 Dec 2014

What causes cooling water temperature gradients in a forested stream reach?

G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah

Related authors

Physically-based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863,https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023,https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Asymmetric impact of groundwater use on groundwater droughts
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020,https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024,https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024,https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024,https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Stream water sourcing from high elevation snowpack inferred from stable isotopes of water: A novel application of d-excess values
Matthias Sprenger, Rosemary Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-1934,https://doi.org/10.5194/egusphere-2023-1934, 2023
Short summary

Cited articles

Andrews, T., Forster, P. M., and Gregory, J. M.: A surface energy perspective on climate change, J. Climate, 22, 2557–2570, 2008.
Bartholow, J. M.: The Stream Segment and Stream network Temperature Models: A Self-Study Course, US Dept. of the Interior, Open-File Report 99-112, US Geological Survey, Fort Collins, CO, USA, 2000.
Beechie, T., Imaki, H., Greene, J., Wade, A., Wu, H., Pess, G., Roni, P., Kimball, J., Stanford, J., Kiffney, P., and Mantua, N.: Restoring salmon habitat for a changing climate, River Res. Appl., 29, 939–960, 2013.
Benyahya, L., Caissie, D., El-Jabi, N., and Satich, M. G.: Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada), J. Hydrol., 380, 247–259, 2010.
Beschta, R. L. and Taylor R. L.: Stream temperature increases and land use in a forested Oregon watershed, Water Resour. Bull., 24, 19–25, 1988.
Download
Short summary
This study demonstrates the processes by which instantaneous longitudinal water temperature gradients may be generated in a stream reach that transitions from moorland to semi-natural forest in the absence of substantial groundwater inflows. Water did not cool as it flowed downstream. Instead, temperature gradients were generated by a combination of reduced rates of heating in the forested reach and advection of cooler (overnight and early morning) water from the upstream moorland catchment.