Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 18, 67-84, 2014
http://www.hydrol-earth-syst-sci.net/18/67/2014/
doi:10.5194/hess-18-67-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
07 Jan 2014
A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US
A. A. Oubeidillah1, S.-C. Kao1, M. Ashfaq1, B. S. Naz1, and G. Tootle2 1Oak Ridge National Laboratory, Oak Ridge, TN, USA
2University of Alabama, Tuscaloosa, AL, USA
Abstract. To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic data set with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation – including meteorologic forcings, soil, land class, vegetation, and elevation – were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous US at refined 1/24° (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter data set was prepared for the macro-scale variable infiltration capacity (VIC) hydrologic model. The VIC simulation was driven by Daymet daily meteorological forcing and was calibrated against US Geological Survey (USGS) WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter data set may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous US. We anticipate that through this hydrologic parameter data set, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter data set will be provided to interested parties to support further hydro-climate impact assessment.

Citation: Oubeidillah, A. A., Kao, S.-C., Ashfaq, M., Naz, B. S., and Tootle, G.: A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US, Hydrol. Earth Syst. Sci., 18, 67-84, doi:10.5194/hess-18-67-2014, 2014.
Publications Copernicus
Download
Share