Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1681-2016
https://doi.org/10.5194/hess-20-1681-2016
Research article
 | 
03 May 2016
Research article |  | 03 May 2016

Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers

Madeline R. Magee, Chin H. Wu, Dale M. Robertson, Richard C. Lathrop, and David P. Hamilton

Related authors

Response of water temperatures and stratification to changing climate in three lakes with different morphometry
Madeline R. Magee and Chin H. Wu
Hydrol. Earth Syst. Sci., 21, 6253–6274, https://doi.org/10.5194/hess-21-6253-2017,https://doi.org/10.5194/hess-21-6253-2017, 2017
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Understanding the compound flood risk along the coast of the contiguous United States
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023,https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Effects of High-Quality Elevation Data and Explanatory Variables on the Accuracy of Flood Inundation Mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Renzo Salas, and Jasmeet Judge
EGUsphere, https://doi.org/10.5194/egusphere-2023-1205,https://doi.org/10.5194/egusphere-2023-1205, 2023
Short summary
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023,https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary
Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023,https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023,https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary

Cited articles

Adrian, R., Walz, N., Hintze, T., Hoeg, S., and Rusche, R.: Effects of ice duration on plankton succession during spring in a shallow polymictic lake, Freshwater Biol., 41, 621–634, https://doi.org/10.1046/j.1365-2427.1999.00411.x, 1999.
Anderson, W. L., Robertson, D. M., and Magnuson, J. J.: Evidence of recent warming and El Niño-related variations in ice breakup of Wisconsin lakes, Limnol. Oceanogr., 41, 815–821, https://doi.org/10.4319/lo.1996.41.5.0815, 1996.
Antenucci, J. and Imerito, A.: The CWR Dynamic Reservoir Simulation Model DYRESM: User Manual Place of publication: Crawley, WA, Australia, The University of Western Australia, Centre for Water Research, 1–41, 2003.
Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler, D. E.: Effects of Climatic Variability on the Thermal Properties of Lake Washington, Limnol. Oceanogr., 49, 256–270, 2004a.
Arhonditsis, G. B., Winder, M., Brett, M. T., and Schindler, D. E.: Patterns and mechanisms of phytoplankton variability in Lake Washington (USA), Water Res., 38, 4013–4027, https://doi.org/10.1016/j.watres.2004.06.030, 2004b.
Download
Short summary
This paper employs a one-dimensional hydrodynamic ice model to simulate ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-year period (1911–2014) with the purpose of better understanding how the changing climate will affect lakes. It is shown that air temperature and wind speed changes have occurred in stages and ice cover and lake thermal structure have responded in a nonlinear way to these changes.