Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-685-2017
https://doi.org/10.5194/hess-21-685-2017
Research article
 | 
02 Feb 2017
Research article |  | 02 Feb 2017

Leaf-scale experiments reveal an important omission in the Penman–Monteith equation

Stanislaus J. Schymanski and Dani Or

Related authors

Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Technical note: Do different projections matter for the Budyko framework?
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022,https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022,https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
A hydrologist's guide to open science
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022,https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022,https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024,https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow
Licong Dai, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu
Hydrol. Earth Syst. Sci., 27, 4247–4256, https://doi.org/10.5194/hess-27-4247-2023,https://doi.org/10.5194/hess-27-4247-2023, 2023
Short summary
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023,https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023,https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary

Cited articles

Allen, R.: A Penman for All Seasons, J. Irrig. Drain. Eng.-ASCE, 112, 348–368, https://doi.org/10.1061/(ASCE)0733-9437(1986)112:4(348), 1986.
Bange, G. G. J.: On the quantitative explanation of stomatal transpiration, Acta Bot. Neerl., 2, 255–296, 1953.
Bowen, I. S.: The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface, Phys. Rev., 27, 779–787, https://doi.org/10.1103/PhysRev.27.779, 1926.
Dolman, A. J., Miralles, D. G., and de Jeu, R. A.: Fifty years since Monteith's 1965 seminal paper: the emergence of global ecohydrology: the emergence global ecohydrology, Ecohydrology, 7, 897–902, https://doi.org/10.1002/eco.1505, 2014.
Hartmann, D. L.: Global physical climatology, Academic Press, 1994.
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.