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Abstract

A simple method is proposed to partition a mixture of two populations in suspended particle size data. The method, termed here
‘the differentiation method’ is based on the function of the lognormal distribution. Suspended material in marine or estuarine sit-
uations often consists of difficult-to-interpret complex populations. The treatment of particle size data by the method described
enables the confirmation of the lognormal law and also the demonstration of the occurrence of a combination of a number of pop-
ulations which may not be distinguished by the classical Gaussian transformation or automatic methods. A simple combination of
graphical and numerical techniques permits the decomposition and the easy determination of the various statistical parameters
(median diameter, mean diameter, etc . . .). The method is applied to interpret observed size distributions of suspended partic-
ulate matter in the Seine estuary. The method enables the determination of the relative sizes of the constituent sub-populations
that comprise the tofal suspended matter. In the example used to illustrate the method, particles are shown to be resuspended as

a function of different hydrodynamic parameters.

Introduction

Dupont et al. (1995) presented two particle size distribu-
tion data of suspended material in the Seine estuary at
Honfleur (France). This site is located within the saline
limit and the maximum turbidity zone of the estuary
(Avoine, 1981). These two samples were obtained on
1/8/94 from the surface waters in a period of flood of the
Seine. One sample followed high water (SCI1, salinity =
5:1g/1) and the other taken at low water (SC5, salinity =
0.3g/1) (Dupont ez al., 1995). The particle size data were
obtained by means of the Coulter counter which can be
considered as a standard grain-size instrument in estuarine
environment (Kranck, 1980; Eisma, 1986; Dupont ez al.,
1986; Eisma, 1993; Van Leussen, 1994). Collected samples
were not treated and measurements were done in the day-
time, keeping samples in the dark, as recommended by
Lafite (1990).

The particle size distributions obtained are given in Fig.
1. At high water, the distribution is quite regular and
appears unimodal, lognormal about a mode of 5 um.
According to Dupont et /. (1995), this population is com-
parable with that of the secondary population defined for
upstream locations obtained on the same day. The sample
taken at low water reveals a notable increase in particle
concentration with a similarly regular unimodal lognormal
distribution around a mode of 8 ym. This is smaller than

the main population (mode of 1011 ym) at the upstream
sites cited previously (Dupont et al., 1995). The above
measurements may signify that, at low water, the particle
concentration is a mix of material remaining in suspension
throughout the period of high water and of material resus-
pended as the tide ebbs. Thus, these two types of mater-
ial have different hydrodynamic regimes.

This mixture of particle populations from different
hydrodynamic regimes may also be defined qualitatively by
means of the scanning electron microscope. Microflocs are
the main components of these two populations, sticking of
elemental particles is mainly due to organic matter.
Unflocculated fine-grained have been observed in suspen-
sion only in iced environment where organic matter con-
tent is very low (Syvitski and Murray, 1981). In estuaries,
macroflocs, upper 100 ym, break up during sampling into
smaller flocs (Eisma, 1993).

Study of particle settling velocities (Fig. 2) confirms
further the presence of the mixed populations of two dif-
ferent hydrodynamic components. According to the results
obtained by Dupont ez al. (1995), the microfloc settling
velocities are described by a power function of diameter D
as @s = K * D" which is characterized by a straight line in
a log-log paper. From Fig. 2, the points of the particle set-
tling velocities lie on a straight line for SC1 and present

two intersecting straight lines with different slopes for
SCs.

177



H.Q. Wang, J.P. Dupont, R. Lafite and R. Meyer

Concentration (um3~!)

5x10° }
4x10 8
3x108
2x10 8

10®

SC1 : high water

SC5 : low water

32 40
Diameter (um)

Fig. 1. Comparison of two sets of particle size distribution data (SCI at high water, SC5 at low water) obtained at Honfleur (Seine estuary,

France).

How may these mixed particle populations be distin-
guished? In the literature, there are two basic approaches
to solving this problem. One is a graphical technique
(Harding, 1949; Tennant and White, 1959; Sinclair, 1974)
and the other is a numerical (or ‘automatic’) process
(Clark, 1977). The graphical method is based on Gaussian
transformation (or the use of probability papers). The
numerical method uses an optimization or least-squares
process. A combined method of graphical and numerical
approaches has been proposed (McCammon, 1976a,
1976b; Bridges and McCammon, 1980). These two basic
approaches have been applied to decompose the mixed
particle populations of SC5. Figure 3 shows the results of
Gaussian transformation of SC5 data. ‘Inverfc’ is the

Settling velocity (mm - s~1)

inverse of the complementary error function. If the data
studied have a normal or lognormal distribution, a straight
line is obtained on Inverfc-D (or logD) diagram. When a
mixed distribution exists, the Inverfc-D (or logD) data
present a variable slope. Figure 3 shows one straight line
only for the Inverfc-logD data of SC5. Hence, this graph-
ical method is unable to decompose the mixture of
two sub-populations defined by the scanning electron
microscope and also by analysis of the hydrodynamic con-
text. Figure 4 presents the final best fit of the particle size
data of SC5 with two lognormal distribution functions by
using the nonlinear least-squares’ decomposition method
(Clark, 1977). The particle size data are well adjusted.
However, the two components (with means of about 11

Stokes {density=2.65)

Stokes (density=1.001)

0

1

>

D (um)

Fig. 2. Comparison of the particle seitling velocities for the two sets of particle size distribution data (SCI at high water, SC5 at low water)

presented in Fig. 1.
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Fig. 3. Gaussian transformation of the particle size distribution data (SC5 at low water).

and 28 pm respectively) obtained by this automatic
method are very different from those observed by the
scanning electron microscope (with means of about 6 and
14 ym respectively). In fact, the secondary component
obtained presents data relating to coarser particle size
classes which are poorly represented here.

The following sections present a new method for sepa-
rating a mixture of two lognormal distributions using deriv-
ative frequency data. Following an explanation of the
principle of the method, it is applied to the interpretation
of the particle size data cited above. The method enables the
decomposition of these mixed particle populations for SC5.

The differentiation method

The particle size distribution of concentrations of sus-
pended material is often considered to reflect a simple log-
normal law or the summation of a number of such laws
(Lambert ez al., 1981; Brun-Cottan, 1977, 1986; Dupont et
al., 1986; Dupont et al., 1995). The frequency of occur-
rence of particles by this lognormal law is given by:

_ 1 mD-py )
¢ N ) ep( 20° J v

where D: particle equivalent diameter;
¢: frequency;
M mid-point coefficient (or median in In D);
0% dispersion coefficient (or variance in In D).

The value of ¢ may be calculated by:

.V
VT * AD
and 7. concentration of a given size class;
Vr: sum of concentrations of all size classes consid-

ered;
AD: size class intervals.

¢

@

By knowing the values of (4 and ¢6? and by using the fol-
lowing formulae, the statistical parameters of the particle
distribution may be calculated (Brun-Cottan, 1986;
Saporta, 1990):

Dmad = CXp(ﬂ - 02)

D,.s = exp(l) 3
D,, =exp(u+0*/2)

Var = expu + 07) - (exp(c?) - 1)

where D,,,zs modal diameter;
D,.s:  median diameter;
Dyy: - mean diameter;

Var: variance of diameter.
From the formulae (3), it is evident that the value of the
median diameter lies between the values for the modal
diameter and the mean diameter. Equation (1) is the basis
of the differentiation method.

PRINCIPLE OF THE METHOD

The Naperian logarithm of Eqn. (1) is written:

_ 1 1 2
lnq)—ln[\/ﬁ]—lnD—zf‘2 (InD - u) 4)
Let: :
Y=In¢ and X =InD (5

Eqgn. (4) becomes:
1

Y=1n[m)—)é—z%z-(x-u)2 (6)

Differentiating Y with respect to X, gives:
s _[ M 1
Y—(a—z——l)—?-X (7
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or, in general terms:
Y=a+b-X 8)

where:

a=£7—1 and b=—;1_7 ©)
Y” and X are therefore connected by a simple relationship;
the equation of a straight line.

The values of 4 and # may be determinated by particle
size data, which is presented later. According to Eqn. (9),
the parameters i and 0 may be obtained easily using the
following formulae:

1

a*l  hd o=~ (10)

From Eqn. (3), the statistical parameters Dyog, Dimed, Dinn
and Var may finally be calculated:

Dmod = exp(— ‘Z‘)
Dmed = exp(-— g;_l)
D,, = exp(-4ls)

Var = exp(—22) - (exp(-}) —1)

(11)

DISCRETIZATION FORMULA

The aim is to calculate the values of X and Y” on the basis
of particle size data consisting of couples (D;, ¢). If two
pairs of values, (D;, ¢;) and (Dj+1), ¢i+1) are considered,
from Eqn. (4):

(maﬂ—m@Jz_Jm(maﬂ+ma)+%_l(u)
o)

In Di+l —In D,‘ 0'2 2

or equally, Yi+1/2 = a + b - Xjr1/2, with:

InD,,, +InD, and Y., ~ Ing,,, —Ing,
2 InD,,, —InD;

(13)

Table 1 demonstrates an example of calculation of Xj+1/2
and Yis1/2.

Other discretization formula may be used if a greater
precision of calculation is required. Precision will increase
as class interval size is reduced.

Xian =

DETERMINATION OF THE COEFFICIENTS @& AND b

The relationship between Y’ and X is affine. Linear
regression analysis may therefore be used to determine
coefficients 4 and 4, i.e.:

_ 2 - XY -Y)

b \2
(X, - X)

and a=Y’'-5-X (14)

where:
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Table 1. Example of calculation of X; and Y; data—parti-
cle size data (SC1) obtained from the Seine estuary
(Honfleur, France).

No  D;(um) V;(um*F') pair X; Y;

1214 296100 0 —  —  —
2 238 478107 12 081 451
30262 669107 23 092 3.50
4 28 899107 34 101 337
5309 L4106 45 109 307
6 333 13910° 56 LI7 265
7357 Le+10° 67 124 238
§ 381  L1§710° 78 131 2.04
9 405 208100 89 137 L7
10 428  223%10° 910 143 126
11 452 23210°  10-11 148 071
12 476 236108  1-12 153 034
13 500  23710°  12-13 158 0.8
14 524 236100 1314 163 0.9
15 547 23010° 1415 168 0.7
16 571 22000° 1516 172 106
17 595 208105 1617 176 136
18 619  19610°  17-18 180 150
19 643  18410° 1819 184 166
20 667  17310° 1920 188  -163
21 690  L6+10° 2021 191  -163
2 714 15410° 2122 195 -84
23 738  L410° 2223 198 201
24 76 1310|2324 201 225
25 786 125108 2425 205 238
26 809  LI710° 2526 208 -2.I8
27 833 10910° 2627 211  -2.44
28 857 L0L10° 2728 213 -2.66
29 881 940107 2829 216 260
30 905 881107 2930 219 241
31 928 823107 3031 222 271
2 95 771107 3132 224 256
300976 721107 3233 227 271
34100 670107 3334 229 298
35 102 616107 3435 231 -3.56
3 105 574107 3536 234 3.8
37107 530007 3637 236 349
33 109 487107 3738 238 385
30 112 454107 3839 240 326
X=X e 7= (15)

N N

The correlation coefficient » between X; and Y; is given
by:
r = E(Xi "'_X)(Y; -Y )_ (16)
VEX, - X -V
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Fig. 4. Best fitting of decomposition of the particle size distribution data (SC5 at low water) using nonlinear least-squares method.

The results obtained from Egns. (14) and (15) may be
influenced strongly by singular data relating to coarser par-
ticle size classes. This may also occur in the case of a mix-
ture of two populations where the X; and Y7 ordinates
cannot be well represented by a single line of best fit. It is,
therefore, preferable to employ a combination of numeri-
cal and graphical techniques that permits the elimination
of singular data and the use of selected data only for deter-
mining the parameters 4 and 4. To apply this method
graphically, it is necessary only to transfer the values of X;
and Y; to graph paper and to draw the line that conforms
to the greatest possible number of points. By taking any
two points on this line (X7, Y1) and (X3, Y3) are obtained
and thus:

A ,
b=—)—(§_—)él and a=Y/-b-X, 17)

With the values of @ and 4, it is easy to calculate i and o,
from Eqn. (10) and determine the statistical parameters
Dyody Dingdy Dy and Var by Eqn. (11).

Validation of the method and
discussion

We shall demonstrate the validity of the differentiation
method numerically and, using theoretical data calculated
according to Eqn. (1), illustrated with X; — Y; diagrams the
occurrence of a mixture of two populations. Two cases are
discussed.

SINGLE POPULATION

The numerical data used in this case are obtained by Eqn.
(1) for y = 2.2 and 0, = 0.36. The distribution curve is
shown in Fig. 5a and the X; — Y} diagram produced by the

differentiation method in Fig. 5b. In the diagram the X; —
Y; ordinates are well aligned. The straight line drawn
through the points enables the precise values of i and 03
to be recalculated.

In the X; — Y; diagram the central parameters, D,z
Dyq and Dy, may be easily located. In effect, Eqn. (8) may
be rewritten as

a-Y’
b

X=- (18)

now, as X = In D,
-y’
D=e -2
;""( b]

By comparing Eqns. (19) and (11), the central parameters
Dysody Diyeg and Dy, are seen to be on the X; — Y; diagram,
the values of X; corresponding respectively to Y7 values of
0, -1 and —1.5 (see Fig. 5b).

(19)

MIXTURE OF TWO POPULATIONS

Here, two distinct cases are highlighted: (i) a mixture of two
populations of which the central parameters are quite differ-
ent and (ii) a mixture of two populations of which the cen-
tral parameters are quite similar. In the first case, the mixed
distribution curve appears bimodal and the mixture is con-
sidered ‘visible’. The second case is considered ‘invisible’ as
the function of distribution appears unimodal: the occur-
rence of a mixture of two populations is not discernible.

Table 2 gives the parameters used for the two condi-
tions studied.

The distribution curves of these populations and their
sub-populations are presented in Figs. 6a and 7a. The cor-
responding diagrams produced by the differentiation
method are shown in Figs. 6b and 7b.
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Fig. 5. Proof of the differentiation method using theoretical data: a)
lognormal distribution curve; b) X; — Y{ diagram produced by the
differentiation method.

For the two cases, each X; — Y; diagram has generated
two straight lines, the first representing population 1 and
the second representing population 2. The slopes reflect
the characteristics of the two constituent sub-populations
comprising the whole. The region lying between the two
straight lines represents a zone of mixing with variable
slope.

Table 2. Hypothetical statistical parameters used to illus-
trate the different.cases of mixed lognormal populations

discussed.

1) ‘visible’ mixture:

parameters u a? Dyeq
population 1 1.61 0.16 5.0
population 2 2.48 0.16 12.0
2) ‘invisible’ mixture:

parameters u o? Dy
population 1 1.61 0.16 5.0
population 2 2.20 0.16 9.0
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Two straight lines produced by the differentiation
method shown above enable the separation of the two sub-
populations comprising the mixture and the recovery of
the statistical parameters corresponding to each.
Application of the differentiation method is most valuable
in the second case studied, where the function of distrib-
ution is unimodal (‘invisible’ mixture). The X; — Y] dia-
gram brings to light the occurrence of this ‘invisible’
mixture.

Application to particle size distribu-
tion data in the Seine estuary

Grain-size analysis evolution has been demonstrated dur-
ing tidal cycle in estuaries such as the Elbe (Chen et al,
1994), the Rhine (Eisma er al, 1980) and the Dollard
(Eisma and Li, 1993). Annual evolution of grain-size dis-
tribution has been found in the lower Seine estuary
(Lafite, 1990). The differentiation method permits identi-
fication and quantification of two particle size distribution
data of suspended material collected in the entire Seine
estuary, from fresh to marine water. The previous finding
of a mix of two populations for SC5 is confirmed by the
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Fig. 6. Illustration of the occurrence of a mixture of two lognormal
populations— ‘visible’ mixture: a) lognormal distribution curves; b)
X; — Y! diagram produced by the differentiation method.
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a) Frequency ¢
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Fig. 7. Illustration of the occurrence of a mixture of two lognormal
populations— ‘invisible’ mixture: a) lognormal distribution curves; b)
X; — Y/ diagram produced by the differentiation method.

differentiation method’s X; — Y; diagram for the particle
size data (see Fig. 8). In Fig. 8, the values obtained for
SC1 (high water) and SC5 (low water) produce contrast-
ing slopes. For the smallest size ranges, the X; and Y; ordi-
nates for the two populations coincide. This confirms that

Y‘_!
6 1 :
PP SC1 : high water
4 B oo o SC5 : low water
°3
*s
®
2 .9 o°°°o
8 °
. 000g
®
0 a Q - X
ofe 12 16e 20 24 28
®oq0s, ubthb
-2 L o &
' (P
-4 ....:

Fig. 8. Comparison of two sets of particle size data (SCI at high
water, SC5 at low water)—X; — Y/ diagram produced by the dif-
Jerentiation method.

the SC5 data comprises two particle populations with dif-
ferent hydrodynamic origins and that one of these popula-
tions is practically identical to that of SC1.

Application of the differentiation method (see Figs. 9
and 10) enables the statistical parameters of these popula-
tions to be determined (Table 3). The distribution curves
obtained by the method (Figs. 9b and 10b) show a very
good agreement with those actually observed for each of
the two samples taken.

The statistical parameters of population 1 extracted
from sample SC5 are very close to those of SCI1 showing
that the hydrodynamic origins of the two particle popula-
tions are practically identical. The same may be stated for
population 2 (mode of 9.66 um) extracted from SCS5; this
is very similar to the populations observed (modes of 10
and 11 pm) at sites further upstream (Dupont et 4l., 1995).
Additionally, for SC5, the relative size of each sub-popu-
lation comprising the sample, i.e. the quantity of continu-
ously suspended matter and the quantity that is
resuspended, is obtained.

In agreement with previously published data (Dupont et
al., 1986; Lafite, 1991; Dupont et al., 1994; Eisma, 1993;
Van Leussen, 1994), the characterization of particle popu-
lations from samples studied reveals qualitative differ-
ences. The separation method presented here allows
a) Y/

b) Concentration (um®~!)

2.5x108
2x10 8
data curve

1sx10% ¢+ f % calculated curve
108
5x10 7

O O ALY . r N

0 8 16 24 -

32 40
Diameter (um)
Fig. 9. Identification of lognormal statistical parameters of particle
size distribution (SCI): a) X; — Y| diagram produced by the dif-
ferentiation method; b) comparison of observed and calculated parti-
cle size distributions.
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Table 3. Statistical parameters for population distributions
(SC1 and SCS5) calculated by the differentiation method.

parameters SCl1 SC5
population 1 population 2

a 8.29 8.74 9.32
b -5.07 -5.05 411
r correlation

coefficient -0.988 —0.992 —0.931
U 1.83 1.93 2.51
o? 0.197  0.198 0.243
Dpyod(im) 5.13 5.64 9.66
Ded(tim) 6.25 6.87 12.32
Dypy(im) 6.90 7.59 13.92
Var (um?) 10.37  12.60 53.36
percentage of

surface area (%) 100 34.7 65.3

quantitative calculation of the relative size of each particle
sub-population where their composition is defined qualita-
tively by the scanning electron microscope and also by the
study of particle settling velocities.

Conclusion

The differentiation method provides a simple graphical
technique to confirm the occurrence of a lognormally
distributed population. Applied to the particle size distri-
bution of suspended material, it enables the determination
of the statistical parameters of the population. In certain
cases, the technique can signal the occurrence of a mixture
of two populations of different origin and can assess the
characteristics of these populations with some precision.
The method is most useful in the case of an ‘invisible’
mixture having an apparently unimodal particle size dis-
tribution. This has been verified by applying the method
to the interpretation of the real mixed particle size popu-
lations which cannot be separated by classical methods.

b) Concentration (um3l~1)

5x10 8
4x10 8
3x10 8
2x10 8

108

Se
.....
23

data curve

calculated curve (p1)
calculated curve (p2)

s L

_ 40
Diameter (um)

24

Fig. 10. Separation of data and identification of lognormal statistical parameters for particle size distribution (SCS): a) X; — Y} diagram-
produced by the differentiation method; b) comparison of observed and calculated particle size distributions.
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