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Abstract

A continuous simulation methodology, which incorporates the quantification of modelling uncertainties, is used for flood frequency
estimation. The methodology utilises the rainfall-runoff model TOPMODEL within the uncertainty framework of GLUE. Long
return period estimates are obtained through the coupling of a stochastic rainfall generator with TOPMODEL. Examples of
applications to four gauged UK catchments are provided. A comparison with a traditional statistical approach indicates the suitability
of the methodology as an alternative technique for flood frequency estimation. It is suggested that, given an appropriate choice of
rainfall-runoff model and stochastic rainstorm generator, the basic methodology can be adapted for use in many other regions of the

world.
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Introduction

With many areas of the world suffering from the effects of
flood damage in recent years, it is clear that there remains a
need for the reliable estimation of flood peaks with given
return period. In the past, these have often been derived
through the use of purely statistical or event-based
hydrological modelling tools (e.g. Rodriguez-Iturbe and
Valdes, 1979 Hebson and Wood, 1982; Diaz-Granados et
al., 1984; Bras et al., 1985; Sivapalan et al., 1990; Bradley
and Potter, 1992; Michaud and Sorooshian, 1993; Gupta
and Dawdy, 1995; Hosking and Wallis, 1997). Recently,
with the availability of more powerful computing facilities,
this problem has been approached through the use of
continuous simulation (e.g. Beven, 1986, 1987; Calver and
Lamb, 1996; Blazkova and Beven, 1997; Lamb, 1999
Cameron et al., 1999).

Continuous simulation is used here to denote the
prediction of a continuous discharge time series through
the use of a hydrological model. Rainfall inputs may either
be observed, or generated from a stochastic rainfall model.
The simulated flow series can be analysed using traditional
flood frequency techniques (e.g. annual maximum or peaks
over threshold analysis). This approach has an advantage
over the earlier derived distribution techniques (e.g.
Eagleson, 1972) in that soil moisture conditions are

continuously accounted for by the rainfall-runoff model.
If it is accepted that the hydrological model used provides
satisfactory simulations, then the resulting flood frequency
estimates are therefore perhaps more hydrologically mean-
ingful. ,

A recent paper by Cameron et 4/l. (1999) demonstrated
the use of a continuous simulation methodology for the
purpose of flood frequency estimation within an uncertainty
framework. This methodology utilised the rainfall-runoff
model TOPMODEL, together with a stochastic rainstorm
generator, in order to produce estimates of flood events of
long return period. This was applied to the 21 years of
hourly flow and catchment average rainfall data available for
the Wye catchment, Plynlimon, Wales, UK. Good
reproduction of the observed hourly annual maximum
flood peaks was demonstrated. Reasonable estimates of
longer return period floods (e.g. 100 years) were also
obtained. In addition, a consistency between the par-
ameterisation of TOPMODEL for both hourly annual
maximum peaks and continuous hourly hydrograph
simulation was shown.

In what follows, applications to four further gauged UK
catchments are presented. The uncertainties involved in the
resulting flood frequency estimates are considered, and the
findings are compared with those of a traditional statistical
approach.
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Tanllwyth

* w Dowles Brook

Fig. 1. Locations of the four UK study catchments.

Four gauged catchments in the UK

Four UK catchments, of varied location, data record, and
catchment characteristics were selected for analysis (Fig. 1
and Table 1). These are the Tanllwyth (mid-Wales), the
Browney (north-east England), the Findhorn (north-east
Scotland) and Dowles Brook (west England). Daily
potential evapotranspiration estimates were obtained from
the nearest MORECS synoptic sites (Thompson e al.,
1981).

Although there is an extensive instantaneous annual
maximum peak record available for each catchment, the
quantity of hourly flow and catchment average hourly
rainfall (CAHR) data is quite varied (Table 1). This ranges
from 5 years (Dowles Brook) to 16 years (Tanllwyth).
Moreover, these periods of hourly data are not consistent
across the four catchments. In addition, the CAHR data
were derived (by the UK’s Institute of Hydrology, prior to
the current study) using hourly raingauge records to
distribute daily catchment rainfall totals (obtained by
averaging over a large number of daily raingauges). This
procedure featured the infilling of missing sections of data
(achieved through the temporal disaggregation of appro-
priate daily data through the use of at-site mass curves,
Huff, 1967; Lamb and Gannon, 1996). As a result, there are
differences in the quality of the CAHR data between the
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four sites. For example, the calculation of the Tanllwyth’s
CAHR record included the use of data obtained from 4
hourly raingauges located within a small catchment area
(0.9 km?). Data from only 4 hourly raingauges within a
much larger catchment area (415.6 km?) were available for
inclusion in the calculation of the Findhorn’s CAHR record.

The hydrological model

Full details of TOPMODEL may be found in Beven et al.
(1995), and Beven (1997), so only a brief summary is
outlined here.

TOPMODEL is a simple semi-distributed model of
catchment hydrology that predicts storm runoff from a
combination of variable saturated surface contributing area
and subsurface runoff (e.g. Beven 1986, 1987; Quinn and
Beven, 1993). The dynamics of the contributing area for
rapid runoff as the catchment wets and dries are based on a
quasisteady state analysis. As with all other TOPMODEL
applications (see Beven, 1997), the topographic index
In (a/tan B) is used as an index of hydrological similarity,
where 4 is the area draining through a point, and tan f is the
local surface slope. The use of this form of topographic
index implies an effective transmissivity profile that declines
exponentially with increasing storage deficits. Calculation of
the In (#/tan f) index was achieved using a modified version
of Quinn ez al’s (1995) multiple flow direction algorithm
taking into account the presence of river pixels in the digital
terrain map (Cameron et al., 1999).

Evapotranspiration losses are controlled by potential
evapotranspiration and storage in the root zone with the
parameter SRMAX (effective available water capacity at the
root zone). The potential evapotranspiration estimation
routine uses the same seasonal sine curve as Beven (1986,
1987) and Blazkova and Beven (1997) with a single mean
hourly potential evapotranspiration parameter. This was
derived directly from the available daily potential evapo-
transpiration as calculated for the nearby synoptic sites by
MORECS (Thompson ez al., 1981).

In this study, TOPMODEL is driven by observed hourly
catchment rainfall inputs for the purposes of flood
frequency estimation. Longer return period estimates are
then obtained through the coupling of TOPMODEL with a
stochastic rainfall model parameterised separately for each
catchment.

The stochastic rainfall model

Full details of the stochastic rainfall model are provided
in Cameron et al. (1999), so only a brief summary is given
here.

The stochastic rainfall model is based on the available
data and generates random rainstorms via a Monte Carlo
sampling procedure. The model characterises a storm in
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Table 1. Details of the four gauged UK catchments used in this study.

Catchment (UK hydrometric station number)

Tanllwyth (54090) Browney (24005) Findhorn (7001) Dowles Brook (54034)
Location and grid Mid-Wales 22 (SN) NE England 45 (NZ) NE Scotland 28 (NH) W England 32 (SO)
reference 843 876 259 387 826 337 768 764
Original data source Institute of Hydrology Former NRA*? Former RPB® Former NRA*
(Northumbrian (Highland Region) (Severn-Trent Region)
Region)
Period of daily 1988-1992 1985-1992 1985-1992 1988-1992
MORECS PET
Period of inst. peak 1973-1992 1954-1995°¢ 1960-1994 1971-1995°¢
data
Period of hourly 1974-1989 1985-1992 1985-1990 1988-1992
flow and CAHR*
Length of hourly 16 8 6 5
data record (yrs)
No. hourly 4 14 4 3
raingauges o
Catch. area (km?) 0.9 178.5 415.6 40.8
Physical Afforested; shales and Coal measures. Blanket peat. Afforested; sandstones
characteristics grits. and marls.
Mean annual 2554 744 1262 734
rainfall (mm)
Mean annual runoff 2086 301 1037 300
(mm)
Mean annual flood 1.1 37.6 234.9 13.1
(m3s_1) v
Q10 (m*™) 0.146 3.523 30.900 0.955
Q50 (m*s™) 0.028 0.979 7.898 0.160
Q95 (m>s7Y) 0.006 0.306 2.046 0.034

* National Rivers Authority — now part of the Environment Agency in England and Wales, UK.

b River Purification Board — now part of the Scottish Environmental Protection Agency, UK.

¢ Partially incomplete record.

4 Catchment average hourly rainfall — calculated by the Institute of Hydrology prior to this study.

Table 2. Rainfall model duration classes and number of observed rainstorm events obtained for each

catchment.
Tanllwyth Browney Findhorn Dowles Brook
Duration Class
1 hr 3490 1635 1182 1056
2-3 hr 1980 718 749 377
4-10 hr 1652 655 574 183
11-16 hr N 254 53 117 16
17-27 hr 165 21 49 2
28-62 hr 39 2 ' 1 1*

>63 hr 47 1 1? 1

* Assumed number of events if duration class “empty”
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Table 3a. Maximum likelihood (ML) estimates and bekavioural parameter ranges for the GPD shape parameter (k).

CDF Tanllwyth Browney Findhorn Dowles Brook
ML Range ML Range ML Range ML Range

1hr -0.1901 —-0.3528:-0.0926 -0.1167 —0.2458:-0.0754 —0.1161% —0.1585:—0.0856 -0.0837* —0.1200:—0.0609
2-3 hr —0.0908% —0.1128:—0.0741 —0.1837 —0.3747:—0.0663 —0.5687 —0.8636:—0.1694 —0.3762 —0.8654:—0.0708
4-10 br —0.0802* —0.1003:—0.0652 —0.1164° —0.1586:—0.0879 —0.1851 —0.3656:—0.1019 —0.5003 —1.2349:—0.0443
11-16 hr —0.4617 —0.6483:—0.2226 —0.0741° —0.1217:—-0.0485 —0.1091 —0.3169:—0.0385 —1.1995 —3.2301:—0.0042
17-27 hr —1.0180 -1.2702:-0.8026 -0.5897 —0.6537:—0.1183 -0.2167 —0.2363:—0.0701 n/a n/a

2862 hr —1.1451 —2.3921:-0.7862 n/a n/a n/a n/a n/a n/a

>63 hr —0.3837 —0.4731:—0.1108 n/a n/a n/a n/a n/a n/a

Duration n/a n/a -0.1211* —0.1373:—0.1072 —0.1211* —0.4716:—0.1613 n/a n/a

Upper bounding required.

Table 3b. Maximum likelihood (ML) estimates and behavioural parameter ranges for the GPD scale parameter (o).

CDF Tanllwyth Browney Findhorn Dowles Brook
ML Range ML Range ML Range ML Range

1 hr 0.5731 0.4481: 0.7346 0.5089 0.4007: 0.6853 0.5615* 0.4139: 0.7668 0.4047* 0.2944: 0.5805
2-3 hr 0.3701* 0.3021: 0.4599 0.4088 0.2828: 0.5978 0.7085 0.4510: 1.0333 0.5593 0.2888: 1.0545
4-10 hr 0.2446" 0.1986: 0.3058 0.3547° 0.2679: 0.4836 0.4556 0.3106: 0.6177 0.3528 0.1413: 0.7665
11-16 hr 0.6564 0.4864: 0.8729 0.2347° 0.1535: 0.3852 0.2429 0.1681: 0.2981 0.3688 0.0952: 0.9973
17-27 hr 2.7988 2.2146: 3.4990 0.7682 0.3759: 0.8061 0.4045 0.2526: 0.3352 n/a n/a

28-62 hr 2.3913 1.8048: 4.9969 n/a n/a n/a n/a n/a n/a

>63 hr 0.4960 0.2713: 0.6689 n/a n/a n/a n/a n/a n/a

Duration n/a n/a 0.4635% 0.4106: 0.5255 0.4635* 0.4710: 0.6929 n/a n/a

Upper bounding required.

terms of a mean storm intensity, duration and inter-arrival
time, in addition to a storm profile component. A “storm” is
defined as any event with a minimum intensity of 0.1 mm at
an hour, a minimum duration of 1 hr and a minimum inter-
arrival time also of 1 hr. In general, this accounts for 99% of
the CAHR in each catchment. This definition was therefore
used to extract a series of storm events directly from each
observed CAHR series.

The analysis of each storm event series revealed that there
was a similar dependence of mean storm intensity upon storm
duration to that shown in the previous Wye catchment study
(see Cameron ¢t al., 1999). On the basis of similar mean storm
intensities, this dependence was incorporated into the model
through the subdivision of the observed storm event series
into the seven duration classes defined in that study. The
duration classes are: 1 hr, 2-3 hr,4-10 hr, 11-16 hr, 17-27 hr,
28-62 hr, and >;63 hr (Table 2). At the sites where the
comparatively short available data sample (e.g. 5 years at
Dowles Brook) would have resulted inan “empty” class, it was
assumed that that class contained only one storm for the
purpose of defining a relative frequency.

For each duration class, an empirical cumulative
distribution function (cdf) of log-transformed mean storm
intensity was constructed directly from the events located
within that class. Where appropriate, the upper tail of a
given cdf was extrapolated via the fitting of a Generalised
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Pareto distribution (GPD). This was done in order to
permit the generation of extreme storm events unrecorded
within the available catchment storm series.

This procedure required a definition for an “upper tail”.
In order to maintain a consistency across the sites, the
proportion between the number of storms in a given
duration class’ upper tail and the number of storms in that
class as a whole was set to the proportion used in the earlier
Wrye study of Cameron et al. (1999). A further prerequisite
for upper tail identification was that the number of storms in
the upper tail was at least equal to the number of years in the
shortest observed hourly record (5 years, Dowles Brook). In
certain cases (e.g. Dowles Brook), this latter requirement
limited the extrapolations to the cdfs of short-medium
duration classes. However, this restriction did not inhibit
the realistic simulation of the observed extreme rainfalls.

The initial GPD fits were obtained using maximum
likelihood (Tables 3a and 3b). Where necessary, an upper
bound, taken from the observed maximum UK rainfalls,
was applied to the fit (Cameron ¢t al., 1999). This was done
in order to prevent the generation of (physically) unrealis-
tically high mean storm intensities at levels of very high
non-exceedance probability. It introduces a dependency
between the shape (k) and scale (¢) parameters of the GPD
and therefore does not increase the number of parameters
required.
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Rainfall Model TOPMODEL
n Year Assess GPD Assess Simulated n Year
Observed |, Fit To Upper Flood Peak GEV Observed
Hourly Tails Of up) Hourly
Rainfall Rainfall cdfs Rainfall
Data Requiring And Flow
Extrapolation l Data
Assess Fit To
Flow Duration
Resampling Curve
Behavioural Behavioural Calculation
GPD Parameter TOPMODEL Of Uncertainty
Sets Parameter Sets Bounds :
Flood Frequency
1000 Year
Simulations
Uncertainty Bounds :

1000 Year Flood Frequency

Fig. 2. Flood frequency estimation by continuous simulation vie GLUE TOPMODEL/stochastic rainfall model: sequence of events. (Adapted

Jrom Cameron et al., 1999).

The storm duration and inter-arrival time characteristics
derived from the observed event series of each catchment
were also modelled using their empirical cdfs. In the case of
inter-arrival time, it was assumed that the observed samples
required no further extrapolation. However, for the
Browney and the Findhorn, the limited sample of storms
necessitated the extrapolation of the duration cdf. This was
achieved via the fitting of a GPD, with an upper bound of
318 hrs (for consistency with the earlier Wye study,
Cameron et al., 1999), to the upper tail of that cdf (Tables 3a
and 3b). The upper tail was defined as having a minimum
threshold (or location parameter, u) of 7 hrs. This yielded
216 and 306 upper tail storms for the Browney and the
Findhorn, respectively.

The final component of the model is a storm profile. In
the earlier study of Cameron ez al. (1999) of the Wye
catchment, the observed 21 year rainstorm event series was
utilised to provide an extensive database of storm profiles
for each duration class. These were normalised by
cumulative volume and total duration. A comparison. of
these profiles with those of the four study catchments
revealed no significant differences. The normalised Wye
profiles were therefore used for all four catchments. This

provided a larger profile database than was available from
the shorter periods of record of the four study catchments.
During a model run, the Wye profiles were randomly
selected in order to provide storm profiles for the simulated
rainfall events.

The generalised likelihood
uncertainty estimation (GLUE)
framework

Every flood frequency estimate is subject to some degree of

Table 4. Initial ranges for the TOPMODEL parameter sets.

Parameter Range

0.0010:0.0450 m
0.0010:0.2000 m
0.0001:8.0000 log
0.0001:10.0000 log

m (recession parameter)

S,max (Max. root zone storage).

Ty (transmissivity)

STDT (standard deviation of
transmissivity)
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uncertainty. The major sources of this uncertainty in the
continuous simulation approach include the limitations of
the observed data series and the choice of rainfall and
hydrological models (especially with respect to the model
structures, and their calibration/validation). In this study,
the Generalised Likelihood Uncertainty Estimation
(GLUE) framework of Beven and Binley (1992) was used
to assess this uncertainty (see also Beven, 1993; Freer e al.,
1996; Franks et al., 1998; Cameron et al., 1999).

The GLUE methodology rejects the concept of a single,
global optimum parameter set and instead accepts the
existence of multiple acceptable (or behavioural) parameter
sets (Beven, 1993).\In this study, a variant of Cameron ez
al.’s (1999) procedure for estimating flood frequency within
the GLUE framework was used for each catchment. The
procedure is illustrated in Fig. 2 and will now be
summarised.

Five thousand TOPMODEL parameter sets, containing
a fairly broad range of parameter values, are initially
generated from independent uniform distributions. Four
parameters are varied: the exponential scaling parameter
(m), effective available water capacity of the root zone
(SRMAX), mean log transmissivity of the soil at saturation
of the surface (In(7,)) and standard deviation of log
transmissivity (S7DT) (Table 4). Other parameters, such
as those derived directly from the observed data (e.g. the
mean hourly potential evapotranspiration parameter) are
kept constant.

A single continuous simulation of the hourly observed
series, utilising observed hourly rainfall inputs, is derived
from each TOPMODEL parameter set using a 20 processor
parallel Linux PC cluster available at the University of
Lancaster, UK. Maximum likelihood is used to fit separate
Generalised Extreme Value (GEV) distributions to the
observed and individual simulated series of hourly annual
maximum flood peaks. The performance of each parameter
set is evaluated using the log likelihood function:

nrp

l(p) = Z_logas

=1
+(—1/k—1) . log [1+& . (i — us)/]
— [+ ks (i — ) Jo] TV

Where nrp is the number of annual maximum (ANNMAX)
peaks in the GEV fit to the observed series with return
periods of less than or equal to half of the observed hourly
series length (nrp = 14, 6, 4, and 3, for the Tanllwyth, the
Browney, the Findhorn and Dowles Brook, respectively),
&, ks and u, are the scale, shape and location parameters of
the GEV distribution fitted to the simulated series, and y; is
a peak extracted from the GEV distribution fitted to the
observed series.
A parameter set is retained as behavioural if:

M

DPa <7D (2)
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where D is the deviance calculated between the maximum
value of /(p) in the sample of five thousand parameter sets
({(P)), and the value of [p) for a given parameter set (pa), as:

Dyo = 2[/(P) = (p),] 3)

and TD is a threshold deviance of 6.25 obtained from the i
distribution at 3 degrees of freedom (for the GEV) and
probability level p = 0.9. TD is constant for each catchment.

The parameter sets which are retained as behavioural
under the flood peak criterion are also tested via a y statistic
calculated between the observed and simulated flow
duration curves. Thirteen points on the flow duration curve
are used (Q/, 05, Q10-090, Q95 and 099; where Q is a
discharge and the associated value is the percentage of time
that that discharge is equalled or exceeded over the course of
the observed flow data series; see Table 1 for sample
observed values), as:

13
Pap= Z[(o,- - 5,)%/S)) 4

Where 4 is twelve degrees of freedom, p = 0.9, O; is the
observed percentage time spent beneath a given flow value,
and S; is the simulated percentage time spent beneath a
given flow value. This yields a rejection threshold of 18.5
which is constant for each catchment. Parameter sets which
provide simulations which meet, or fall below, this threshold
are retained as behavioural.

This likelihood measure is used in preference to the
continuous hourly hydrograph Nash and Sutcliffe (1970)
efficiency because of the variable quality of the CAHR data
and the consequent increase in timing errors.

To provide flood frequency estimates beyond the upper
return period limit of the observed series, the stochastic
rainfall generator is coupled with TOPMODEL. This
requires the estimation of the rainfall model’s GPD
parameters prior to the runs with TOPMODEL and this
is also achieved within the GLUE framework.

Five thousand GPD parameter sets are initially generated
for each cdf upper tail requiring extrapolation. For the cases
where the maximum likelihood estimate of the GPD fit
requires an upper bound, ¢ is sampled from a uniform
distribution within the range of three standard errors on
either side of that estimate. Upper bounding is assumed and
k calculated. For the other cdf upper tails, both ¢ and x are
independently sampled from uniform distributions within
the range of three standard errors on either side of the
maximum likelihood estimate, and a parameter set is
rejected as non-behavioural if the upper bound is exceeded.
For these latter upper tails only, this more explicit form of
bounding produces superior GPD fits to the data in
comparison with those obtained through the first procedure.

The GPD parameter sets retained by each procedure are
also evaluated in terms of providing a reasonable goodness-
of-fit to the appropriate cdf upper tail. This is calculated
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Table 5. Number of TOPMODEL parameter sets retained following rejection of non-behavioural

parameter sets.

Tanllwyth

Browney Findhorn Dowles Brook
Flood Peak 769 1457 2991 2641
Flow Duration Curve 727 1263 2892 520

using the log likelihood measure, (0), as:

np
1(0)y, = > —loga + (—=1/ — 1).log[l + K.(x; — u) /0]

i=1
)

Where du is the particular cdf upper tail, x is a shape
parameter, « is a location parameter (or threshold), x; is an
event in the upper tail, np is the number of events in that
tail, and x,—u is an exceedance.

Rejection of the non-behavioural GPD parameter sets is
achieved in an identical manner to that of the flood peak
constraint. On a cdf upper tail basis, the deviance of a given
value of {0) from the original maximum likelihood estimate
is calculated and compared with a threshold deviance (Eqns.
2 and 3). A probability level of p =0.9 with 2 degrees of
freedom (for the GPD), yielding a threshold deviance value
of 4.61, is utilised for the y* distribution. The threshold
deviance is consistent for each upper tail and for each
catchment. Tables 3a and 3b contain the behavioural ranges
of x and &, respectively.

A standard sample size of 1000 behavioural parameter sets
for TOPMODEL, and for the rainfall model, are generated.
For the catchments with greater than one thousand
behavioural parameter sets retained from the initial sample
of five thousand, a random sample of one thousand of those
behavioural parameter sets is taken. For the other catch-
ments, resampling is conducted in order to increase the
numbers of behavioural parameter sets to the required level.
In each case, the resampling procedure is identical to that of
the original, with the exception that, for the purpose of
efficiency, the new parameter sets are generated over
parameter ranges which are consistent with those of the

initial behavioural parameter sets. The new parameter sets
are then evaluated as before.

For each catchment, the one thousand behavioural
TOPMODEL. and GPD parameter sets are used to
calculate likelihood weighted uncertainty bounds for both
the observed series length and the one thousand year flood
frequency simulations. The former requires the TOPMO-
DEL likelihood weights only and are calculated using the
likelihood L(p), defined as the exponential of /(p), under the
assumption that each likelihood is equivalent to a relative
probability. The one thousand year simulations require the
use of a combined measure (CM), which assumes equal
weightings between the rainfall and TOPMODEL par-
ameter sets:

nd
CM = expll(p) +1/nd. Y O (6)

i=1

Where nd is the number of cdfs requiring extrapolation (e.g.
seven), and /() is the rescaling of each value of /(0) such
that they share a common scale with {p).

A standard procedure (Freer et al., 1996; Cameron ez al.,
1999) is used to calculate the uncertainty bounds. L(p) is
used for the observed series length flood frequency
simulations, and CM for the 1000 year flood frequency
simulations. In each case, this involves the rescaling of the
likelihood weights over all of the behavioural simulations in
order to produce a cuamulative sum of 1.0. A cdf of discharge
estimates is constructed for each ANNMAX peak using the
rescaled weights. Linear interpolation is used to extract the
discharge estimate appropriate to cumulative likelihoods of
0.05, 0.5, and 0.95. This allows 90% uncertainty bounds, in
addition to a median simulation, to be derived.

Following this procedure, it is also possible to make a

Tuable 6. Parameter ranges of behavioural TOPMODEL parameter sets.

Findhorn

Dowles Brook

Tanllwyth Browney
m (m) 0.0063:0.0394 0.0043:0.0331
Simax (M) 0.0010:0.1996 0.0012:0.1998
Ty (log) 0.0001:7.9924 0.0120:7.9874
STDT (log) 0.0047:9.9576 0.0043:9.9989

0.0010:0.0424
0.0010:0.1998
0.0072:7.9874
0.0043:9.9851

0.0045:0.0128
0.0142:0.1999
0.0133:7.9949
0.0018:9.9913
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Fig. 3. Example dotty plot for the Findhorn caichment showing the initial 5000 TOPMODEL parameter values vs L(p). Behavioural parameter

sets are located at the top.

comparison between the simulated hourly flood peak
estimates and those of the extensive observed instantaneous
peak record available at each site.

Results and discussion

Table 5 details the results of the initial flood frequency runs
using the observed hourly rainfall series for each catchment.
Given the initial five thousand parameter sets, it can be seen
that the system of constraint is effective in rejecting non-
behavioural parameter sets. It is notable, however, that the
flood peak measure is not such a strong constraint for the
catchments with shorter hourly data records. For example,
2991 of the initial 5000 TOPMODEL parameter sets
generated for the Findhorn (which has 6 years of hourly
data available) are retained on a flood peak basis. This
contrasts with the 769 TOPMODEL parameter sets
retained for the Tanllwyth (16 years of hourly record).
Clearly the number of years of hourly record available is an
important control upon the effectiveness of /p) at the
chosen level of probability (p = 0.9).
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For three of the four catchments (Tanllwyth, Browney
and Findhorn), the flow duration curve measure rejects
relatively few of the TOPMODEL parameter sets which
have been accepted as behavioural under the flood peak
likelihood measure. For example, 1263 (of 1457 flood peak
behavioural) parameter sets are retained on a flow duration
curve basis for the Browney (Table 5). This suggests that,
given the likelihood measures and rejection thresholds used,
there is a strong consistency between flood peak and flow
duration curve parameterisation for these catchments (see
also Cameron ez al., 1999). This finding also applies to the
Dowles Brook, although it is apparent that the number of
parameter combinations in the initial sample which are
acceptable on the basis of both likelihood measures is much
smaller than for the other three catchments (520 parameter
sets of the initial sample are retained on a flow duration
curve basis, Table 5). This result will be returned to below.
Overall therefore, the constraining strategy is effective in
retaining parameter sets which yield acceptable simulations
of hourly ANNMAX flood peaks in a hydrologically
convincing manner.

Table 6 details the parameter ranges of the one thousand



Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation)

Tanliwyth

ascharge |m's ]

.sv1 reduced varlate

©

-05 0 05 1 15 2 25 3 a5

Browney

2 :

~0.5 o 06 1 15 2 25
ev1 reduced variate

Fig. 4. 90% uncertainty bounds calculated from the annual maximum peaks obtained from 1000 behavioural TOPM ODEL parameter sets run
with observed hourly rainfall data. a: Tanllwyth. b: Browney. c: Findhorn. d: Dowles Brook. Circles — observed hourly peaks; solid line — GEV
distribution fit to the observed hourly peaks; dashed lines — 90% uncertainty bounds; dotted line — median simulation. Return periods (T) are also

included.

behavioural TOPMODEL parameter sets for each catch-
ment. A comparison with Table 4 yields some interesting
similarities and differences. For instance, it can be seen that
the majority of the behavioural parameter ranges (e.g. those
of SRMAX, Ty and STDT) are consistent with those of the
original sampling ranges (Table 4) for the Tanllwyth, the
Browney and the Findhorn. The main exception occurs
with respect to the m parameter, which is important in
controlling the rate of contributing area expansion and the
hydrograph recession response.

It is also possible to examine this finding visually. This
can be done by plotting the individual parameter values
against the appropriate likelihood measure. An example of
such a plot, for the Findhorn, is illustrated in Fig. 3. This
contains the original five thousand parameter sets as plotted
against L(p) (the behavioural parameter sets are in the upper

region of each plot). These dotty plots represent a
projection of the n-dimensional parameter response surface
onto a single parameter axis. Each dot represents a sample
from the (complex) likelihood measure surface resulting
from a model run with a specific parameter set. It can be
seen that, for this catchment, and given the choice of
likelihood measure, only the m parameter appears to
demonstrate peaked behaviour (this is located between
approximately 0.005m and 0.010m). The other three
parameters exhibit a relatively flat upper limit, although
SRMAX does display a small peak (between approximately
I:mm and 10 mm). Indeed; although such plots will not
reveal any parameter interactions, they do reveal that
behavioural values are located almost across the full spread
of the respective parameter ranges. Similar results for L(p)
are also obtained for the other three catchments.
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Fig. 5. 90% uncertainty bounds calculated from the annual maximum peaks obtained from 1000 behavioural TOPMODEL/rainfall parameter
sets with 1000 year simulation length. a: Tanllwyth. b: Browney. c: Findhorn. d: Dowles Brook. Circles — observed hourly peaks; solid line— GEV
distribution fit to the observed hourly peaks; crosses — observed instantaneous peaks; dash-dot line — GEV distribution fit to the observed
instantaneous peaks; dashed lines — 909 uncertainty bounds; dotted line — median simulation. Return periods (T) are also included.

Following the application of the flow duration curve
constraint, the Dowles Brook results (Tables 5 and 6)
demonstrate a reduction in the ranges of the m, SRMAX
and T parameters. This can perhaps be explained by the
catchment’s physical characteristics. Dowles Brook pos-
sesses a more permeable geology (sandstone, Table 1) than
the other three catchments (e.g. the Tanllwyth is situated
upon shales and grits). Consequently, it is perhaps
unsurprising that the modelling of this catchment’s flow
duration curve characteristics can only be achieved
successfully using a limited range of parameter values since
the subsurface zone has a stronger control on the form of the
hydrograph.

Figures 4a-d illustrate the 90% likelihood weighted flood
frequency uncertainty bounds derived for the one thousand
behavioural TOPMODEL parameter sets for each catch-
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ment.-using observed hourly rainfall inputs. The observed
hourly ANNMAX peaks (circles), a GEV distribution fitted
to those observed peaks (solid line), and a median simulation
(dotted line), are also included. In general, it can be seen that
the model performs well. For all four catchments there is
good “bracketing” of the observed peaks and associated
fitted GEV distributions.

Figures 5a—d detail the likelihood weighted uncertainty
bounds obtained from the 1000 year simulations for each
catchment. These were derived from the one thousand
behavioural TOPMODEL and rainfall parameter sets. Both
the observed hourly and the more extensive series of
instantaneous ANNMAX peaks (and associated fitted GEV
distributions) are included in each case. The instantaneous
peak series are not directly comparable to:the hourly
timestep simulations (Beven, 1987), especially-for small
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Tuable 7. Forms of the GEV distributions fitted to the observed hourly and instantaneous ANNMAX

- peaks at each site.

Tanllwyth Browney Findhorn Dowles Brook
Hourly EV2 EV2 EV3 EV3
Instantaneous EV2 EV1 EV2 EVl

flashy catchments such as the Tanllwyth. However, they can
be used as independent data sets for testing the validity of
the simulations. The differences between the uncertainty
bounds (with respect to the period of the observed hourly
series) of these 1000 year simulations and those of the earlier
observed rainfall-driven simulations (Figs. 4a-d) occur as a
result of different rainfall realisations (see Cameron ez al.,
1999).

For the Tanllwyth, Browney and Findhorn (Figs. 5a-c),
the bounding of both observed series and their associated
fitted GEV distributions is quite reasonable. Only a limited
number of peaks (e.g. between return periods of approxi-
mately 6.5 and 14 years, or plotting positions of 1.8 to 2.6,
on Fig. 5a) lies outwith the bounds. The estimates of long
return period floods (e.g. 100 years or a plotting position of
4.6) are subject to wider uncertainty bounds for the
catchments with the shortest records (e.g. the Findhorn,
Fig. 5c¢).

The Dowles Brook results (Fig. 5d) are also reasonable
with respect to the observed hourly peaks. However,
beyond a plotting position of approximately 2.0 (or an 8
year return period), the 5% uncertainty bound is somewhat
higher than the corresponding fitted GEV distribution.
This also applies to the observed instantaneous peaks and
their fitted GEV distribution. It is likely that these results
stem from the short period of observed hourly record
available for use in constraint for this catchment (Table 1).
The assumption that the GPD rainfall constraint is
consistent across different duration classes and across
catchments may also be a contributing factor.

Finally, it is worth considering the forms of the GEV
distributions fitted to the hourly and instantaneous peak
data at each site (Table 7). It is interesting to note that, with
the exception of the Tanllwyth (which possesses a relatively
long observed hourly record, Table 1), there is a change in
form between the short record of hourly peaks and the
much longer record of instantaneous peaks. This is
particularly significant for the Findhorn and the Dowles
Brook, where the apparent EV3 hourly response has given
way to the more extreme EV2 and EVI1 distributions,
respectively. This finding highlights the difficulty of
accurate estimation of long return period events from
limited data using traditional statistical techniques. While
regional analysis (e.g. Hosking and Wallis, 1997) may be of
assistance, it is probable that the continuous simulation
techniques used in this study represent a more hydro-

logically meaningful methodology for the estimation of flood
frequency at a particular site.

Conclusions

This paper has applied a variant of the continuous
simulation methodology developed by Cameron et al.
(1999) for hourly annual maximum flood frequency
estimation to four gauged catchments in the UK. This is
done within an uncertainty framework that avoids the idea
that there is an optimal set of model parameter values. The
methodology uses simulations based on both observed
rainfalls and a stochastic rainstorm generation model, for
extension to long return periods, to drive the rainfall-runoff
model TOPMODEL. The strategy for uncertainty estima-
tion incorporates conditioning on rainfall statistics, annual
maximum flood peaks and flow duration curve simulation.

In applications of the methodology to the Tanllwyth,
Browney, Findhorn and Dowles Brook catchments, good
results were obtained for all four sites, particularly those
with long observed hourly record lengths. The problem of
accurate estimation of flood events of long return period
(e.g. 100 years) via a traditional statistical approach, given
limited data, was also illustrated. In particular, it was
proposed that the continuous simulation approach yielded
more hydrologically meaningful flood estimates than those
obtained via the traditional techniques. Taken together with
Cameron et al’s (1999) findings for the Wye catchment,
these results suggest strongly that the continuous simulation
methodology used is acceptable as an alternative method for
flood frequency estimation. Given a reasonable quantity of
hourly rainfall and flow data, and an appropriate choice of
rainfall-runoff and stochastic rainfall models, it is probable
that this approach could be adapted easily for use in many
other regions of the world.
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