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Abstract
This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged
basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the
posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain
Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative
formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and
observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models
that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1) process, whereas the
simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the
statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most
robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions,
so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that
structural errors in the model are more important than parameter uncertainties.
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Introduction
BACKGROUND

Regional hydrological modelling enables a solution of  a
classical problem in hydrology, namely the estimation of
the water balance in ungauged catchments. This implies
repeated use of a model everywhere within a region using a
global set of parameters. Use of regional parameters in
streamflow simulations for individual catchments results in
some loss of precision (Motovilov et al., 1999). The obvious
gain is in the ability to calculate runoff in ungauged basins
but more robust model parameters and a smaller parameter
uncertainty also result (Engeland et al., 2001).
Regionalisation methods search for a relationship between
model parameters and landscape characteristics. While for
lumped models, multiple regression between model
parameters and catchment characteristics can be used (e.g.
Abdulla and Lettenmaier, 1997), for distributed models the

method is difficult to apply where the catchment comprises
several model elements. For a distributed hydrological
model, the parameters have to be determined for each model
element based on predefined characteristics, e.g. the
topography, soil and vegetation classes of the corresponding
landscape element. Identical global parameter values are
used wherever the characteristics fall into the same classes.
The proxy basin test suggested by Klemeš (1986) has been
used to regionalise both distributed and lumped models (e.g.
Refsgaard and Knudsen, 1996; Motovilov et al., 1999). This
test evaluates whether the model is geographically
transferable within a region. The model parameters are
calibrated on a subset of data and then validated on
independent data from catchments not included in the
calibration.
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UNCERTAINTIES IN HYDROLOGICAL MODELLING

Neither the regression method nor the proxy basin test
accounts for the uncertainties in the hydrological modelling.
To know how well the model performs in a regional
application, the modelling uncertainties have to be identified
and quantified. The simulation errors of a hydrological
model have four important sources (Refsgaard and Storm,
1996):

(1) random or systematic errors in input data, i.e.
precipitation, temperature and evapotranspiration, etc.
used to represent the input conditions in time and space
over the catchment;

(2) random or systematic errors in the recorded data, i.e.
the river water levels, groundwater heads, discharge data
or other data used for comparison with the simulated
output;

(3) errors due to non-optimal parameter values;
(4) errors due to incomplete or biased model structure.

Error sources (1) and (2) depend on the quality of the data
whereas (3) and (4) are more model-specific. In several
papers, two or more of the error sources are included in the
estimation of the total modelling uncertainty. Thorsen et al.
(2001),  Refsgaard et al. (1983) and Storm et al. (1988)
conclude that the uncertainty in precipitation is more
important than that in the parameters. Krzysztofowicz (1999)
shows that, in hydrological forecasts, the uncertainties in
the precipitation forecasts are more important than those in
the hydrological model. For regional studies, the importance
of model and parameter uncertainties might increase, so it
is the parameter and model uncertainties that are investigated
in this paper.

Of several tools developed to investigate the uncertainties
in hydrological models, at least two might be used for
regionalisation. The multi-objective method of Gupta et al.
(1998) cautions that there might not exist any correct
objective function that adjusts the simulated streamflow to
all parts of the observed record, e.g. timing and magnitude
of flood peaks, the recession after high flows, low flows
and the water balance. The multi-objective method,
therefore, estimates a parameter uncertainty due to the trade-
off between different objective functions and might be used
for regionalisation by estimating the uncertainty due to the
trade-off between the objective function for several
catchments. Another possibility is the Bayesian method
(Kuzcera, 1983), which is applied in this paper. The
Bayesian method estimates a probability density for the
model parameters conditioned on observations. The
uncertainty is calculated around the optimal value of one

objective function. Beven and Binley (1992) introduced a
variant of this method known by the acronym GLUE
(Generalised Likelihood Uncertainty Estimation). The
Bayesian method requires a likelihood function that
describes the statistical properties of the simulation errors,
whereas in the GLUE framework any subjectively chosen
objective function might be used as the likelihood.

OBJECTIVES

This study evaluates the applicability of the distributed
process-oriented Ecomag model (Motovilov et al., 1999)
for prediction of streamflow in ungauged basins in the
experimental area of the NOrthern hemisphere climate-
Processes land-surface EXperiment (NOPEX) (Halldin et
al., 1995; 1999). To be suitable for regional applications, a
hydrological model should fulfil the following requirements:

the model results should be robust;
the regional model parameter should be well defined;
the statistical model for the simulation errors should be
transferable to ungauged catchments.

The first requirement might be tested by a cross-validation
test. Motovilov et al. (1999) used the proxy-basin test with
good results for the Ecomag model adapted to the NOPEX
area. Furthermore, Engeland et al. (2001) concluded that
well defined regional parameters can be determined
according to pre-defined criteria. The GLUE concept
showed that the variance of the parameter distribution
decreased as streamflow observations from several
catchments were included in the parameter estimation.

In this paper, the robustness and the transferability of the
simulation errors are tested by using a Bayesian formulation
to estimate the uncertainty of the regional parameters and
of the model structure. The hydrological parameters and
the statistical parameters in the likelihood function are
estimated simultaneously by MCMC. The probability
density of the hydrological parameters is used to estimate
the uncertainty in the simulated streamflow due to parameter
uncertainty, whereas the statistical parameters are used to
estimate the uncertainty in the simulated streamflow due to
structural errors in the model. The results indicate the
importance of parameter uncertainty relative to structural
errors in the model and suggest how best to achieve the
largest improvement in the hydrological modelling. Results
are presented for two statistical likelihood functions and
one GLUE likelihood function to see how the formulation
of the likelihood influences the parameter and the
streamflow estimations. The robustness of the three
likelihood functions will be compared. A robust model
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should perform well on average but the variation in
performance between catchments should be small. The
performance measure is the Nash-Sutcliffe coefficient Reff

(Nash and Sutcliffe, 1970). The transferability of the
simulation errors will be tested. If the simulation errors are
transferable, it should be possible to relate them to catchment
characteristics or climatic conditions.

Data and model description
THE NOPEX AREA

The NOPEX project  (Halldin et al., 1995; 1999) established
a study area in southern Sweden, northwest of Uppsala in
an area of low relief where the altitude ranges from 5 to 145
m.a.s.l. Till is the most common soil type, particularly in
the north. Clay soils with sandy and silty materials dominate
in the south while, in the north, peat covers the largest area.
(Seibert, 1994). The important land use classes are forests
(57%), mires (2.6%), lakes (2.6%) and urban areas (2.0%).
The average annual precipitation is 740 mm, evapo-
transpiration 470 mm, and runoff 270 mm. The area is
covered by snow for about 110 days a year but the snow
cover is normally not continuous throughout the winter. The

mean annual temperature is +6oC, with a maximum in July
(+17oC) and a minimum in February (–5oC). The vegetation
period lasts about 180 days (Seibert, 1994).

METEOROLOGICAL AND HYDROLOGICAL DATA

The data are provided from the SINOP (System for
Information in NOPex) database (Lundin et al., 1999)
developed in the NOPEX project. The Swedish
Meteorological and Hydrological Institute (SMHI) provides
daily values from 25 precipitation, 7 temperature, 5 air
humidity, and 10 streamflow stations for the period from
1981–1990. All stations are located within or close to the
NOPEX area. The gauged catchments cover a large part of
the area (Fig. 1). Short catchment descriptions are given in
Table 1.

THE ECOMAG MODEL

The Ecomag model (Motovilov et al., 1999) calculates
streamflow Qi,t,sim (θθθθθ,D[t-t’,t]) on a daily time resolution as a
function of model parameters θθθθθ and input data D (D is
precipitation, air temperature and vapour pressure deficit, i
is an index for catchment, t an index for time, and t’ is the

Fig. 1. The NOPEX area and the ten gauged catchments.
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length of the memory of the hydrological model). The model
area is divided into grid cells and the same process
formulations are applied within each cell independently. A
threshold temperature decides the phase of precipitation.
Snow melt is estimated by a degree-day-factor equation,
evapotranspiration by Thornthwaite-Budyko, surface runoff
by a kinematic wave formulation, horizontal subsurface flow

by Darcy’s law and vertical movement is controlled by the
infiltration capacity. The point input observations are
interpolated to each grid cell by the inverse distance
weighting method. The vertical structure of a grid cell is
shown in Fig. 2.

Each grid cell is assigned the soil and vegetation class
covering most of its respective area. Some of the parameters

Table 1.  Characteristics for gauged catchments in the NOPEX area.

No Station Catchment Area (km2) Lake (%) Forest (%) Open land(%)

1 Ulva Kvarndamn Fyrisån 950.0 3.0 61.0 36.0
2 Sörsätra Sagån 612.0 1.1 61.0 37.9
3 Gränvad Lillån 168.0 0.0 41.0 59.0
4 Härnevi Örsundaån 305.0 1.0 55.0 44.0
5 Lurbo Hågaån 124.0 0.3 77.7 27.0
6 Ransta Sävaån 198.0 0.9 66.1 33.0
7 Sävja Sävjaån 727.0 2.0 64.0 34.0
8 Tärnsjö Stalbobäcken   14.0 1.5 84.5 14.0
9 Stabby Stabbybäcken     6.6 0.0 87.0 13.0
10 Vattholma Fyrsiån 284.0 - - -
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Fig. 2. The vertical structure of Ecomag for one model element.
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in θθθθθ depend on the soil or vegetation class of the grid cell,
whereas the remaining parameters are common for the whole
region. The parameters that depend on the soil and
vegetation classes are not calibrated for each individual class
but the standard parameter values are multiplied by a
common factor. For each parameter, the relative differences
between its value for the soil or vegetation classes are
determined prior to the calibration. This procedure reduces
the number of parameters that need to be calibrated.

APPLICATION OF ECOMAG TO THE NOPEX AREA

The chosen grid-size is 2 × 2 km. As the average slope length
is less than 2 km, subsurface flow between grid cells is
omitted. The water is assumed to flow directly into the river.
As few geographical data are available for the Vattholma
catchment, streamflow at Vattholma is included in the model
for calculating streamflow at Ulva Kvarndam further
downstream (Fig. 1). Six soil classes (till, clay, sand, peat,
shallow bedrock, and lake) and five land-use classes (forest,
open, peat, and lakes) are defined.

The present study is based on Motovilov et al. (1999) in
which, following the proxy basin test (Klemeš, 1986), a
regional calibration and validation of Ecomag was
performed as well as validation of internal variables. As a
first step, the model was calibrated using 7 years’ streamflow
data for three catchments. The soil parameters were adjusted
using soil moisture and groundwater data from five small
experimental catchments. Thereafter, the model was
validated against 14 years’ streamflow measurements from
six other catchments as well as synoptic streamflow and
evapotranspiration measurements during two concentrated
field efforts in 1994 and 1995.

The nine parameters that were the most sensitive to
simulation of streamflow are included in the MCMC
simulations. They are: vertical conductivity of horizon A,
horizontal conductivity of horizon A, horizontal
conductivity of the groundwater zone, thickness of horizon
A, evaporation, surface depression storage, degree-day-
factor, critical temperature of snow/rain precipitation, and
the threshold temperature for start of snowmelt. The first
four parameters depend on soil class, the following three
on the land-use class, while the last two are common for the
whole area.

The Bayesian method
The Bayesian method estimates a multi-dimensional
probability density p(θθθθθ,ϕϕϕϕϕ|Y) for the hydrological parameters
θθθθθ and the statistical parameters ϕϕϕϕϕ conditioned on the
streamflow observations Y:

( ) ( ) ( )
C

pp
p

φθφθY
Yφθ

,,
, = (1)

where p(θθθθθ,ϕϕϕϕϕ) is the prior density and C is a normalisation
constant. When the data Y are given, p(Y|θθθθθ,ϕϕϕϕϕ) might be
regarded as a function of θθθθθ and ϕϕϕϕϕ which is the likelihood
function of θθθθθ and ϕϕϕϕϕ given Y and is written L(θθθθθ,ϕϕϕϕϕ|Y). Hence:

( ) ( ) ( )
C

pL
p

φθYφθ
Yφθ

,,
, = (2)

  Due to non-linearities in the model, the probability density
may have an irregular surface containing several local
maxima and therefore be far from normally distributed. The
density is, therefore, simulated by MCMC.

FORMULATION OF THE LIKELIHOOD FUNCTION

The formulation of the likelihood function L(θθθθθ,ϕϕϕϕϕ|Y) controls
the probability  distribution of the parameters (Boyle et al.,
2000). The likelihood is proportional to the probability of
the vector of simulation errors δδδδδ that is the differences
between observed and simulated streamflows:

( ) ( )φθδYφθ ,fL ∝, (3)

where f is any multidimensional probability density function.
The statistical properties of the simulation errors have to be
investigated carefully. The simulation errors might depend
on the catchment or the hydrological processes and they
might be correlated both in time and space. Kuczera (1983),
Sorooshian (1991), Romanowicz et al. (1994), Langsrud et
al. (1998) and Engeland (2002) among others have
constructed statistical models for the simulation error that
take into account one or more of these aspects. To find a
suitable likelihood function is difficult. Gupta et al. (1998)
suggested that no objective and statistically correct
likelihood-function might exist. No study, as far the authors
know, includes the spatial dependence of the simulation
errors. The full space-time structure of the simulation errors
is difficult to grasp for a hydrological model operating on
daily time steps. The structure will, amongst others, depend
on the relative differences between the catchment responses.
In this study, the auto-correlations are accounted for whereas
the spatial correlations are not included.

The likelihood functions applied here are based on the
results from Engeland (2002). To obtain homoscedastic
simulation errors, they are defined as the differences between
the log-transformed observed and simulated streamflows:
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[ ] ( )[ ]tttsimtiobstiti QQ ,',,,,, ,loglog −−= Dθδ (4)

Two models for the simulation errors are constructed. The
simple model is contained within the full one, so the full
model is presented. The simulation errors are modelled as
an AR(1) process where the parameters depend on the
hydrological processes and the catchments:

( )( ) ( )( ) ( )( )( ) titikitiitiktikiti mm ,1,1,,,, εµδβαµδ ++−+=+− −−

( )),(, ,0~ tikiti N τωε + (5)

where i is an index (i = 1,...,9) for the nine first catchments
listed in Table 1, and k(i,t) is an index function (k = 1,...,13)
for the climate classes listed in Table 2. The climate class
for catchment i at time t is decided by the average
precipitation and temperature at time t within each catchment
in addition to the observed snow depth at one location. The
climate classes are chosen to distinguish between important
hydrological processes. The simulation errors are assumed
to be different for increasing runoff compared to recession
periods. The rate of evapotranspiration might be important
for the recession and low flows, whereas snow melt and
rain decide the high flows. It is necessary to take special
care of the snow accumulation and snow melt processes
because they make the hydrological system extremely non-
linear. Based on these considerations, the climate is classified
into temperature intervals, and each temperature class is
divided into four subclasses dependent on the possible
combinations of observed precipitation and observed snow-

cover. This parameterisation combines information about
the simulation errors across the catchments. The climate-
dependent parameters will show whether it is possible to
transfer information about the simulation errors to ungauged
catchments. For the bias and the variance parameters, climate
class 13 is chosen as a reference (m13=0, τ13=0). The Fyrisån
catchment is chosen as a reference for the auto-regressive
parameters (β1=0). Positively biased parameters indicate
under-estimation and negative values indicate over-
estimation of streamflow. Using this parameterisation, the
mk and ωk parameters will adjust the bias and variance to
each climate class, whereas βi will adjust the auto-correlation
to each catchment. The total number of parameters to be
estimated for the full model is 72: 21 location parameters,
21 auto-regressive parameters and 21 scale parameters in
addition to nine parameters for the Ecomag model. The auto-
regressive part is excluded for the simple model so that 51
parameters have to be estimated.

The likelihood of the hydrological and the statistical
parameters, assuming the residuals εi,t  in Eqn. 5 are
independent, is:
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where T is number of time steps (in this case 3650), I is
number of catchments (in this case 9), δ i,0=0, and
k(i,0)=k(i,1).

GLUE LIKELIHOOD

Engeland et al. (2001) estimated the parameter uncertainty
using a GLUE likelihood that is a subjectively chosen
measure of fit :
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where i is an index for catchment, n is an index for year, 2
,niσ

is the average squared simulation errors, and 2
,, niobsσ is the

variance of the observed streamflow in catchment i and year
n.
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Table 2.  Climate classes used to group the simulation errors.

No Temperature Precipitation Snow depth
(oC) (mm) (mm)

1 5.0 - 30.0 >1.0 <1.0
2 5.0 - 30.0 >1.0 >1.0
3 5.0 - 30.0 <1.0 <1.0
4 5.0 - 30.0 <1.0 >1.0
5 -2.5 - 5.0 >1.0 <1.0
6 -2.5 - 5.0 >1.0 >1.0
7 -2.5 - 5.0 <1.0 <1.0
8  -2.5 - 5.0 <1.0 >1.0
9 -10.0 - -2.5 >1.0 <1.0
10 -10.0 - -2.5 >1.0 >1.0
11 -10.0 - -2.5 <1.0 <1.0
12 -10.0 - -2.5 <1.0 >1.0
13 -30.0 - -10.0 - -

( )( ) ( )( )]21,1,, −− −−+− tikitiitik mµδβα
2
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THE PRIOR DISTRIBUTIONS

Non-informative uniform priors are used for the 21 location
parameters µµµµµ and m). For ωi flat priors above zero are used.
To obtain a positive variance it is required that ')min( ωτ ≥k

where ω´ = –min(ωi), and for the τk parameters uniform
priors above ω´  are defined. The auto-regressive process is
assumed to be stable and to have positive auto-correlations;
thus the sum of any αk and βi must be located between 0
and 1. The sums are expected to be close to 1, because
dynamical models are known to have highly correlated
simulation errors. The αk parameters will contain most of
the auto-correlation, and a linear prior between 0 and 1 is
used. For the βi parameters, uniform conditional priors
between α´and α´´ where α´ = –min(αk) and α´´ = 1–max(αk)
are defined. For the Ecomag-parameters, uniform priors
between the upper and lower limits given in Table 3 are
used.

MCMC SIMULATIONS

The Metropolis Hastings (MH) algorithm (Hastings, 1970),
a Markov Chain Monte Carlo (MCMC) methodology, is
used to simulate the full posterior distribution and estimate
the parameters. The MH algorithm generates a Markov chain
that converges to the distribution of the parameters. After
removing the initial ‘burn-in’, this chain is used as a
dependent sample from the distribution.

The computing time is a limitation for the implementation
of the MH algorithm. To keep the computing time as low as
possible, all the Ecomag parameters are updated in one
block, whereas the statistical parameters are updated for each
iteration in a random order. A brief description of the
algorithm is given in the appendix.

CREDIBILITY INTERVALS FOR STREAMFLOW

The MH sample from the estimated parameter distribution
is shuffled through the Ecomag model to obtain a sample of
streamflows for each day. The 95% credibility interval for
streamflow due to parameter uncertainty is calculated from
these samples. The 95% credibility interval due to model
uncertainty is calculated from the statistical model for the
simulation errors.

THE ROBUSTNESS OF THE LIKELIHOOD MODELS

To test the robustness of the likelihood models and determine
how well the simulated streamflows based on the different
models fit the observations, the Nash-Sutcliffe model
efficiency Reff is calculated (Nash and Sutcliffe, 1970):

( )

( )∑

∑

=

=

−

−
−= T

t
obsiobsti

T

t
simtiobsti
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QQ

QQ
R

1

2
,,,

1

2
,,,,

, 1 (9)

where Q is the variable for which the efficiency measure is
calculated, Q is the estimated mean value, i is index for
catchment, t is index for time, sim index simulations, obs
index observations, and T is the total number of time steps
(here 3650). A test for the robustness is the average Reff for
all NOPEX area and the differences in Reff  between
catchments. A robust model should have a large average
Reff, but the variation between the catchments should be
small. Two efficiency measures are calculated for each
catchment, the first for non-transformed streamflow and the
second for log-transformed streamflows.

Table 3.  The lower and upper limit for the uniform prior distribution of the ECOMAG parameters.

Parameter Abbrevation Lower limit Upper limit

Evaporation* EVA 0.01 3.0
Horizontal conductivity H.A* HCA 0.001 100.0
Vertical conductivity H.A* VCA 0.001 100.0
Horizontal conductivity groundwater zone* HCG 0.001 100
Critical temperature  start of snowmelt (oC) CTS -2.0 3.0
Critical temperature phase of precipitation (oC) CTP -2.0 3.0
Degree day factor* DDF 0.1 3.0
Thickness horizon A* THA 0.05 4.5
Surface depression storage* SDS 0.0001 10.0

*Factor multiplied to the optimal parameter values estimated in Motovilov et al. (1999).



Kolbjørn Engeland and Lars Gottschalk

890

Results
SIMPLE LIKELIHOOD MODEL

The likelihood function is ill-posed for five of the Ecomag
parameters when the simple likelihood is used. The five ill-
posed parameters are evapotranspiration, critical
temperature for start of snow-melt, critical temperature for
phase of precipitation, degree-day-factor and thickness of
horizon A. Figure 3 shows the log-likelihood and the
likelihood function for the critical temperature for start of
snow melt while the other parameters are fixed. The location
of the global optimum is relatively well defined (Fig. 3a)
but, as regards the peak, it is more difficult to define the
optimum. A lot of noise is present on the more general curve
(Fig. 3b), and the likelihood contains several narrow spikes
(Fig. 3c). The ill-posedness makes it difficult to estimate
the distribution of the parameters. The MCMC procedure
fails because it converges very slowly. To carry out the
MCMC simulations, these five parameters are fixed at the
maximum likelihood estimate (due to the ill-posedness it is
not necessarily the global maximum), and the conditional
distribution for the four remaining Ecomag parameters and
the 42 statistical parameters is estimated.

The algorithm is iterated 50 000 times. The trajectories
of the chains have been inspected and they seem stationary.

It is, therefore, concluded that the chain converges and that
the last 40 000 samples might be used for inference. The
estimated statistical parameters and their 95% credibility
intervals are shown as box-plots in Fig 4. The estimated
hydrological parameter values and their 95% credibility
intervals are shown in Fig. 5 (model 1). Subjectively chosen
credibility intervals for the five ill-posed parameters are also
included in Fig. 5. The interval spanned by the log-likelihood
higher than 1280 (Fig. 3) is assumed to define a 95%
credibility interval. To be sure that the uncertainty in the
parameter values is not under-estimated, the variances
chosen are much wider than those given by maximum
likelihood theory. The 95% credibility intervals for the
simulated streamflow estimated from the simple statistical
model alone are shown in Fig. 6a, and from the uncertainty
in the Ecomag parameters alone in Fig. 6b. The 95%
credibility intervals for both the statistical model and the
Ecomag parameters are similar to Fig. 6a and, therefore,
not shown. In Fig. 6b, the five ill-posed parameters are
assumed to be independent and normally distributed. This
procedure does not capture all the properties of the parameter
distributions (e.g. correlations) but indicates the sensitivity
of the model results to the parameters.

FULL LIKELIHOOD MODEL

For the full likelihood model, the MH-algorithm is iterated
20 000 times, and no parameters are ill-posed. The
trajectories of the chains are inspected, and the last 15 000
are used for inference. The estimated Ecomag parameters
and their 95% credibility intervals are shown in Fig. 5 (model
2). The 95% credibility intervals for the simulated
streamflow estimated from the full statistical model are
shown in Fig. 7a and from the uncertainty in the Ecomag
parameters alone in Fig. 7b. The 95% credibility intervals
for both the statistical model and the Ecomag parameters
are similar to Fig. 7a and, therefore, not shown.

GLUE LIKELIHOOD

The results for the GLUE likelihood are obtained from
Engeland et al. (2001). The MH algorithm was iterated
11 000 times and the last 10 000 iterations were used for
inference. Figure 5 shows the estimated parameters and their
95% credibility intervals (model 3) and the corresponding
95% credibility intervals for simulated streamflow are shown
in Fig. 8.

THE ROBUSTNESS OF THE LIKELIHOOD MODELS

The efficiency measures for the Ecomag model alone based
on all three likelihood models, and for the hydrological and
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Fig. 3. Log-likelihood (a and b) and likelihood function (c) for the
critical temperature for start of snow melt.
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Fig. 5. The estimated parameter values and their 95% credibility intervals based on the simple likelihood (1), the full likelihood (2) and the
GLUE likelihood (3) for the nine Ecomag parameters (see Table 3 for the abbreviations of parameter names).
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Fig. 6. Observed streamflow (solid lines) and 95% credibility intervals for the simulated streamflow (grey areas) estimated from the statistical
model alone (a) and from the uncertainty in the Ecomag parameters alone (b) based on the simple likelihood model.
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Fig. 7. Observed streamflow (solid lines) and 95% credibility intervals for the simulated streamflow (grey areas) estimated from the statistical
model alone (a) and from the uncertainty in the Ecomag parameters alone (b) based on the full likelihood model.
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Table 4.  The Nash-Sutcliffe model efficiency (Reff) (1981-1990) for original streamflow and log-transformed streamflow.

GLUE LIKELIHOOD         SIMPLE LIKELIHOOD MODEL         FULL LIKELIHOOD MODEL

Catchment Ecomag alone    Ecomag alone      Ecomag Ecomag alone Ecomag
+simple statistical model     + full statistical model

Fyrisån              0.81  /  0.82 0.80  /  0.86 0.73  /  0.86 0.09  /  -0.19 0.98  /  0.99
Sagån                0.57  /  0.65 0.61  /  0.71 0.61  /  0.66 0.29  /  -0.29 0.94  /  0.97
Lillån                 0.69  /  0.62 0.79  /  0.74 0.71  /  0.81 0.00  /  -0.74 0.97  /  0.97
Örsundaån     0.75  /  0.75 0.65  /  0.71 0.63  /  0.77 0.26  /  -0.28 0.95  /  0.97
Hågaån              0.63  /  0.67 0.65  /  0.70 0.63  /  0.77 0.24  /  -0.30 0.96  /  0.98
Sävaån     0.77  /  0.79 0.65  /  0.72 0.63  /  0.78 0.17  /  -0.26 0.95  /  0.97
Sävjaån              0.71  /  0.59 0.65  /  0.70 0.63  /  0.76 0.24  /  -0.30 0.96  /  0.98
Stalbobäcken     0.57  /  0.54 0.65  /  0.71 0.63  /  0.77 0.27  /  -0.26 0.97  /  0.98
Stabbybäcken    0.61  /  0.57 0.65  /  0.70 0.63  /  0.76 0.24  /  -0.35 0.96  /  0.98

Average     0.68  /  0.67 0.68  /  0.73 0.65  /  0.78 0.22  /  -0.30 0.96  /  0.97

Fig. 8. The 95% credibility intervals (grey areas) for simulated streamflow due to the parameter uncertainty estimated by the GLUE likelihood
and the observed streamflow (solid lines).
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the statistical models together for only the two statistical
likelihood models, are shown in Table 4.

Discussion
THE ILL-POSED PARAMETERS

The optimal Ecomag parameters are located in different parts
of the parameter space for the two statistical likelihood
models. This difference might explain why the Ecomag
parameters are ill-posed for the simple likelihood model but
well defined for the full likelihood model. The reason for
the ill-posedness is probably that the hydrological model is
non-linear. The properties of the Ecomag model may need
investigation in more detail to find a smoother likelihood.
The ill-posedness disturbs the estimation procedure. It leads,
for instance, to having to decide whether the critical
temperature for start of snow melt is 0.800 or 0.805oC, which
is trivial. A priori a smooth likelihood surface is desirbale;
to achieve this it is possible to restrict the variances ω and τ
to be much larger. These parameters will then lose their
interpretation as the variance of the simulation errors. A
second possibility is to define a function that smooths the
likelihood surface. To find such a function, however, is not
an objective in this paper and is open to further studies.

THE ROBUSTNESS OF THE LIKELIHOOD MODELS

The Reff values in Table 4 show that the streamflow estimates
based on the simple likelihood model are as good as the
estimates based on the GLUE likelihood for non-
transformed streamflows, and better for the log-transformed
streamflows. The Reff values indicate satisfactory or good
simulation results for all catchments. Here, a minumum of
0.75 is classified as a good result and between 0.75 and
0.36 as satisfactory. The Reff values for the simple likelihood
model fluctuate less between the catchments than the Reff

values for the GLUE likelihood. The simple likelihood gives
more robust streamflow simulations and is, therefore, the
most suitable for simulation of streamflow in ungauged
catchments. However, a cross-validation test is necessary
to answer this question fully.

The fit to the observed record is almost perfect when
Ecomag is combined with the full statistical model  to
simulate streamflow (Fig. 7a and Table 4). The auto-
regressive term improves the streamflow estimation
significantly. The Ecomag model alone, however, performs
badly (Fig. 7b and Table 4)because the full likelihood (Eqn.
7) minimises not the simulation errors but rather the
difference between the observed and simulated streamflow
gradients. Moreover, the full likelihood behaves as a black-

box model on top of the Ecomag model. When the statistical
and hydrological models are optimised simultaneously, one
cannot be sure that the hydrological model alone gives the
best possible estimates. The auto-regressive term of the
likelihood might compensate for the mistakes of the Ecomag
model. To obtain parameters that give better simulations
for the hydrological model alone, there are two possible
solutions within the Bayesian framework. The first is to
define prior distribution for the Ecomag parameters that have
small variances. The calibration procedure will then lose
some freedom and the Ecomag model alone might give better
simulations. The problem is, however, to have enough
information to determine such well defined priors. The
second solution is to formulate a penalised likelihood
function for the Ecomag parameters, e.g. by requiring that
the water balance for the hydrological model alone should
be fulfilled to a certain degree.

ERRORS IN THE MODEL STRUCTURE AND
TRANSFERABILITY OF SIMULATION ERRORS

The statistical parameters describe errors that arise from the
model structure. The statistical parameters for the full
likelihood model are not shown because it makes little sense
to interpret them. The following comments relate to the
estimated statistical parameters for the simple likelihood
model shown in Fig. 4.

The variability between the catchment-dependent
parameters µµµµµ and ωωωωω is larger than the variability between
the process dependent parameters m and τττττ. This shows that
the catchment properties are at least as important as the
underlying hydrological processes for explaining the
simulation errors of Ecomag.

Both the bias and the variance depend on the catchments
(µµµµµ and ωωωωω in Fig. 4). To estimate the bias and the variance
for an ungauged catchment, it is necessary to regionalise
these parameters; they may be common for the whole area
or depend on catchment characteristics. The variance ωωωωω is
slightly negatively correlated with catchment area (–0.28)
and lake percentage (–0.56), and the bias µµµµµ is slightly
positively correlated with lake percentage (0.26). These
correlations indicate that the Ecomag model has the highest
uncertainty for small catchments with a small lake-
percentage and tends to estimate less streamflow for
catchments with a large lake-percentage than for catchments
with a small lake-percentage. The results show that there is
potential to transfer the catchment-dependent statistical
parameters to ungauged catchments by utilising the
catchment characteristics. There are too few data points,
however, to establish a relationship via multiple regression.
The best solution is to use the catchment characteristics
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directly in the parameterisation of the likelihood function.
The simulation errors also depend on the underlying

hydrological processes. This information is useful in a
regional context and shows that it is possible to transfer
knowledge about the simulation errors to ungauged
catchments. The bias parameter (m) depends on the non-
linear snow processes for temperatures between 2.5oC and
5.0oC and less on the water transport processes. Ecomag
over-estimates the streamflow when the temperature is
above 5oC (m1–m4), under-estimates when the temperature
is between –2.5oC and 5.0oC (m5–m8), and over-estimates
slightly again for temperatures below –2.5oC relative to the
reference climate class (m13 = 0). The variance depends on
the climate classes in a more complicated way. It is  smallest
for the reference climate class (τ13 = 0) and for temperatures
below –2.5oC (τ9–τ11). For temperatures around 0oC, the
variance is highest when there is snow cover (τ6 and τ8).
For temperatures above 5oC, the variance is smallest when
there is snow cover and no precipitation (τ4). The variance
for rainfall-events (τΙ) has the same magnitude as that for
precipitation and possible snow melt events when the
temperature is around 0oC (τ6). This implies that the
simulation of transport processes is as least as important as
the simulation of snow processes for explaining the variance
of the simulation errors.

ERRORS IN THE ECOMAG PARAMETERS

The estimated Ecomag parameter values and the width of
the credibility intervals depend on the likelihood function
(Fig. 5). The credibility intervals show that the estimated
parameter uncertainty is much higher for the GLUE
likelihood than for the two statistical likelihoods. The reason
is that the GLUE likelihood punishes less than the statistical
likelihoods for wrong simulations. The parameters estimated
by the simple likelihood model are within the credibility
intervals estimated by the GLUE likelihood, except for the
vertical conductivity of horizon A and the conductivity of
the groundwater zone. A reason for these two significant
differences is that the GLUE likelihood operates on non-
transformed streamflows, whereas the statistical likelihood
operates on log-transform streamflows. The GLUE
likelihood therefore puts more weight on high streamflow
values in the parameter estimation. The Ecomag parameters
estimated by the full likelihood model differ significantly
from the GLUE estimates for five parameters; among them
the evaporation, the horizontal conductivity of horizon A
and the thickness of horizon A are the most different. These
three parameters might be the most important to control to
obtain better results for the full likelihood model.

CREDIBILITY INTERVALS FOR SIMULATED
STREAMFLOW

The credibility intervals for the simulated streamflows
calculated from the simple model indicate that the
uncertainty in the Ecomag parameters (Fig. 5b) is less
important than the errors in the model structure (Figs. 5a,
6a) model for explaining the total modelling uncertainty.

The statement above depends on how the parameter and
model uncertainty is represented. The use of a statistical
model for the simulation errors to represent the uncertainties
in the model structure has some drawbacks, particularly
because it does not include the physics of the hydrological
system, e.g. the water balance and the process dynamics. If
some flood peaks are estimated one day too early or too
late, the estimated variance in the statistical model might
become relatively high. Such mistakes are serious in the
discharge domain but not in the time domain. The credibility
intervals in Fig. 5a indicate a high uncertainty in the
hydrological model, and a modeller seeks more confidence
in a model than these credibility intervals indicate. Instead
of constructing a statistical model for the simulation errors,
the GLUE and the multi-objective method utilise the
flexibility in the model parameters to describe the total
modelling uncertainty. In the GLUE framework it is possible
to require that the parameter uncertainty should be high
enough to let a 95% credibility interval for the streamflow
cover 95% of the observed streamflows. In any event, the
credibility intervals for the simulated streamflow based on
a GLUE likelihood (Fig. 7) are much wider than those based
on a statistical likelihood (Fig. 5b). This way of representing
the uncertainty utilises knowledge of the dynamics of the
hydrological system that is implemented in the model. It is
not necessary to invent a new model to describe the
uncertainties. A serious disadvantage for this uncertainty
estimation is that the model structure might not be flexible
enough to describe all the uncertainties in the simulations.
This is clearly seen in Fig. 7 where the observed values far
exceed the estimated credibility intervals for a short period
in 1988/89.

Conclusions
A full Bayesian formulation has been applied to estimate
regional parameters for the Ecomag model adapted to the
NOPEX area. The hydrological parameters and the statistical
parameters for the simulation errors are estimated
simultaneously. Two statistical likelihood functions and one
GLUE likelihood function have been used to see how
different formulations influence the results.

Ecomag predicts streamflow in ungauged basins with
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reasonable precision and robust model parameters are
obtained. A simple statistical likelihood model gives more
robust parameter estimates than a GLUE-likelihood and is,
therefore, preferred for regionalisation of the hydrological
parameters. In this paper, the parameters in the Ecomag
model have been regionalised. If the simulation errors of an
ungauged catchment in the same area are of interest, the
statistical parameters have to be regionalised as well. The
results show that the simulation errors depend on the climate
so that some knowledge of the simulation errors can be
transposed to ungauged basins.  The simulation errors also
depend on the catchments; hence, catchment characteristics
can be used to transfer more knowledge about the simulation
errors to ungauged catchments. The variance of the
simulation errors will be under-estimated for some
catchments and over-estimated for others as a result of the
regionalisation.

The model uncertainty is more important than the
parameter uncertainty in explaining the errors in the
simulated streamflow. However, this conclusion assumes
that a statistical model for the simulation errors is used as
the likelihood function. In hydrology, alternative
formulations such as GLUE and the multi-objective method
are used to estimate the modelling uncertainties. These two
methods utilise the flexibility in the model parameters to
estimate the uncertainty, and the present results show that
the parameter uncertainty is larger in the GLUE than in the
Bayesian framework.

Further studies might go in two directions. The first is to
investigate how to represent and parameterise the modelling
uncertainties and to compare the Bayesian method with both
the multi-objective and the GLUE methods. It would also
be interesting to investigate Bayesian methodology further.
Important tasks are to find a penalised likelihood function
for the AR(1) likelihood, include spatial correlations in the
likelihood model, and to include the uncertainty in the
precipitation and streamflow observations in the total
modelling uncertainty which will not necessarily increase
much because the four error sources might interact and
cancel each other out. The second direction is to use the
tools presented here to develop and, hopefully, improve the
parameterisation of the hydrological processes. It is possible
to compare different process formulations and choose the
the most suitable for regional applications. Then, it might
be important to include multiple responses in the model
evaluation, e.g. soil moisture, ground water and snow cover.
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Appendix
The vector of all parameters is Z and π their posterior
densities, q their proposal densities, m the number of
iterations, ns the number of statistical parameters, and ne the
number of hydrological parameters. The statistical
parameters are located in Z1–Zns and the hydrological
parameters are located in Zns+1–Zns+ne. The algorithm involves
the following steps:

for L = 1,2 ,...m, let Z(L) be the current state of the chain.
draw I randomly from 1,2 ,...ns+1 (each only once for
each iteration)

if I = ns+1 ( )L
nnn ess

Zx ++= :1   else  ( )L
IZx =

draw a new value for x* from a specified irreducible
proposal distribution qI:

( )** ,~ xxqx I     where ( ) Ijxx L
jj ≠∀=* (A1)

compute the acceptance probability
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As the ratio of two posterior densities is calculated, this
algorithm does not require the normalisation constant of
the posterior probability density (Eqn. 2).

THE PROPOSAL DENSITIES

The proposal densities (Eqn. A1) must be decided. A random
walk algorithm is used, i.e. the proposal density depends
on the current state of the chain. For all parameters, uniform
proposal densities centred at the current parameter value
are defined. No values outside the uniform prior distributions
are proposed, because then the acceptance probability is
zero. The amplitudes of the uniform priors are kept constant
to simplify the acceptance probability.

THE ACCEPTANCE PROBABILITIES

For the µµµµµ, m, ωωωωω, τττττ and the Ecomag parameters, the uniform
proposal densities are constructed to have a constant
variance. As a result ( ) ( )xxqxxq ,, ** = , and the acceptance
probability (Eqn. A2) can be simplified to the ratio of the
new and old posterior densities:

( ) ( )
( )







=
x
xxxa

π
π *

* ,1min, (A10)

For the ααααα and βββββ parameters it is necessary to use Eqn. (A2)
to calculate the acceptance probabilities.

INITIALISATION OF THE MH ALGORITHM

The initial values of the parameters might in principle be
chosen randomly within the prior distribution. The MH-
algorithm will then converge towards the area of highest
probability. This convergence is rather slow. To save
computing time, the parameters are optimised with respect
to the likelihood function, and the optimised parameters are
used as initial values for the MH algorithm.

TUNING THE MH ALGORITHM

The amplitudes of the uniform proposal densities are tuned
to obtain a chain that converges fast. According to Chib
and Greenberg (1995), the acceptance rate for a new point
in the chain should be about 45% when one parameter is
updated and about 25% when six parameters are updated in
one block. As the statistical parameters are updated one by
one, the amplitudes of these proposal densities are tuned to
achieve an acceptance rate between 40% and 50%. The
tuning of Ecomag’s proposal densities is carried out in two
steps. Firstly, the proposal density for each parameter is
tuned to an acceptance rate between 40% and 50%. Then,
the amplitudes of all proposal densities are scaled by a
common factor to obtain an acceptance rate of between 20
and 30% when the Ecomag parameters are updated in one
block.


