Articles | Volume 9, issue 6
https://doi.org/10.5194/hess-9-596-2005
https://doi.org/10.5194/hess-9-596-2005
31 Dec 2005
31 Dec 2005

The impact of broadleaved woodland on water resources in lowland UK: I. Soil water changes below beech woodland and grass on chalk sites in Hampshire

J. Roberts and P. Rosier

Abstract. The possible effects of broadleaved woodland on recharge to the UK Chalk aquifer have led to a study of evaporation and transpiration from beech woodland (Black Wood) and pasture (Bridgets Farm), growing in shallow soils above chalk in Hampshire. Eddy correlation measurements of energy balance components above both the forest and the grassland enabled calculation of latent heat flux (evaporation and transpiration) as a residual. Comparative measurements of soil water content and soil water potential in 9 m profiles under both forest and grassland found changes in soil water content down to 6 m at both sites; however, the soil water potential measurements showed upward movement of water only above a depth of about 2 m. Below this depth, water continued to drain and the soil water potential measurements showed downward movement of water at both sites, notwithstanding significant negative soil water potentials in the chalk and soil above. Seasonal differences occur in the soil water content profiles under broadleaved woodland and grass. Before the woodland foliage emerges, greater drying beneath the grassland is offset in late spring and early summer by increased drying under the forest. Yet, when the change in soil water profiles is at a maximum, in late summer, the profiles below woodland and grass are very similar. A comparison of soil water balances for Black Wood and Bridgets Farm using changes in soil water contents, local rainfall and evaporation measured by the energy balance approach allowed drainage to be calculated at each site. Although seasonal differences occurred, the difference in cumulative drainage below broadleaved woodland and grass was small.