Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 14, issue 6 | Copyright

Special issue: Cold region hydrology: improved processes, parameterization...

Hydrol. Earth Syst. Sci., 14, 925-940, 2010
https://doi.org/10.5194/hess-14-925-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  14 Jun 2010

14 Jun 2010

Simulation of snow accumulation and melt in needleleaf forest environments

C. R. Ellis, J. W. Pomeroy, T. Brown, and J. MacDonald C. R. Ellis et al.
  • Centre for Hydrology, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada

Abstract. Drawing upon numerous field studies and modelling exercises of snow processes, the Cold Regions Hydrological Model (CRHM) was developed to simulate the four season hydrological cycle in cold regions. CRHM includes modules describing radiative, turbulent and conductive energy exchanges to snow in open and forest environments, as well as account for losses from canopy snow sublimation and rain evaporation. Due to the physical-basis and rigorous testing of each module, there is a minimal need for model calibration. To evaluate CRHM, simulations of snow accumulation and melt were compared to observations collected at paired forest and clearing sites of varying latitude, elevation, forest cover density, and climate. Overall, results show that CRHM is capable of characterising the variation in snow accumulation between forest and clearing sites, achieving a model efficiency of 0.51 for simulations at individual sites. Simulations of canopy sublimation losses slightly overestimated observed losses from a weighed cut tree, having a model efficiency of 0.41 for daily losses. Good model performance was demonstrated in simulating energy fluxes to snow at the clearings, but results were degraded from this under forest cover due to errors in simulating sub-canopy net longwave radiation. However, expressed as cumulative energy to snow over the winter, simulated values were 96% and 98% of that observed at the forest and clearing sites, respectively. Overall, the good representation of the substantial variations in mass and energy between forest and clearing sites suggests that CRHM may be useful as an analytical or predictive tool for snow processes in needleleaf forest environments.

Publications Copernicus
Special issue
Download
Citation
Share