Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 15, issue 9 | Copyright
Hydrol. Earth Syst. Sci., 15, 2963-2978, 2011
https://doi.org/10.5194/hess-15-2963-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Sep 2011

Research article | 19 Sep 2011

On the spatio-temporal analysis of hydrological droughts from global hydrological models

G. A. Corzo Perez1, M. H. J. van Huijgevoort1, F. Voß2, and H. A. J. van Lanen1 G. A. Corzo Perez et al.
  • 1Hydrology and Quantitative Water Management Group, Centre for Water and Climate, Wageningen University, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
  • 2Center for Environmental Systems Research, University of Kassel, Kassel, Germany

Abstract. The recent concerns for world-wide extreme events related to climate change have motivated the development of large scale models that simulate the global water cycle. In this context, analysis of hydrological extremes is important and requires the adaptation of identification methods used for river basin models. This paper presents two methodologies that extend the tools to analyze spatio-temporal drought development and characteristics using large scale gridded time series of hydrometeorological data. The methodologies are classified as non-contiguous and contiguous drought area analyses (i.e. NCDA and CDA). The NCDA presents time series of percentages of areas in drought at the global scale and for pre-defined regions of known hydroclimatology. The CDA is introduced as a complementary method that generates information on the spatial coherence of drought events at the global scale. Spatial drought events are found through CDA by clustering patterns (contiguous areas). In this study the global hydrological model WaterGAP was used to illustrate the methodology development. Global gridded time series of subsurface runoff (resolution 0.5°) simulated with the WaterGAP model from land points were used. The NCDA and CDA were developed to identify drought events in runoff. The percentages of area in drought calculated with both methods show complementary information on the spatial and temporal events for the last decades of the 20th century. The NCDA provides relevant information on the average number of droughts, duration and severity (deficit volume) for pre-defined regions (globe, 2 selected hydroclimatic regions). Additionally, the CDA provides information on the number of spatially linked areas in drought, maximum spatial event and their geographic location on the globe. Some results capture the overall spatio-temporal drought extremes over the last decades of the 20th century. Events like the El Niño Southern Oscillation (ENSO) in South America and the pan-European drought in 1976 appeared clearly in both analyses. The methodologies introduced provide an important basis for the global characterization of droughts, model inter-comparison of drought identified from global hydrological models and spatial event analyses.

Publications Copernicus
Download
Citation
Share