Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 15, issue 11
Hydrol. Earth Syst. Sci., 15, 3307–3325, 2011
https://doi.org/10.5194/hess-15-3307-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 15, 3307–3325, 2011
https://doi.org/10.5194/hess-15-3307-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Nov 2011

Research article | 04 Nov 2011

Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 1: Optimization criteria

D. Brochero et al.
Related subject area  
Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins
Jianyu Liu, Qiang Zhang, Vijay P. Singh, Changqing Song, Yongqiang Zhang, Peng Sun, and Xihui Gu
Hydrol. Earth Syst. Sci., 22, 4047–4060, https://doi.org/10.5194/hess-22-4047-2018,https://doi.org/10.5194/hess-22-4047-2018, 2018
Short summary
Spatial patterns and characteristics of flood seasonality in Europe
Julia Hall and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 3883–3901, https://doi.org/10.5194/hess-22-3883-2018,https://doi.org/10.5194/hess-22-3883-2018, 2018
Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018,https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary
Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014
Myoung-Jin Um, Yeonjoo Kim, Daeryong Park, and Jeongbin Kim
Hydrol. Earth Syst. Sci., 21, 4989–5007, https://doi.org/10.5194/hess-21-4989-2017,https://doi.org/10.5194/hess-21-4989-2017, 2017
Short summary
The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016,https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Cited articles  
Alpaydin, E.: Introduction to Machine Learning. Adaptive Computation and Machine Learning, The MIT Press, Cambridge, 2nd Edn., 2010.
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996.
Bao, H.-J., Zhao, L.-N., He, Y., Li, Z.-J., Wetterhall, F., Cloke, H. L., Pappenberger, F., and Manful, D.: Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast, Adv. Geosci., 29, 61–67, https://doi.org/10.5194/adgeo-29-61-2011, 2011.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Boucher, M.-A., Perreault, L., and Anctil, F.: Tools for the assessment of hydrological ensemble forecasts obtained by neural networks, J. Hydroinf., 11, 297–307, https://doi.org/10.2166/hydro.2009.037, 2009.
Publications Copernicus
Download
Citation