Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
  • CiteScore value: 4.10 CiteScore
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Volume 15, issue 11 | Copyright
Hydrol. Earth Syst. Sci., 15, 3355-3366, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Nov 2011

Research article | 08 Nov 2011

Evaluation of two precipitation data sets for the Rhine River using streamflow simulations

C. S. Photiadou1,2, A. H. Weerts2, and B. J. J. M. van den Hurk1,3 C. S. Photiadou et al.
  • 1Institute for Marine and Atmospheric Research, Utrecht University 3584CC, Utrecht, The Netherlands
  • 2Deltares, Rotterdamseweg 185, 2629 HD Delft, The Netherlands
  • 3KNMI, P.O. Box 201, 3730 AE De Bilt, The Netherlands

Abstract. This paper presents an extended version of a widely used precipitation data set and evaluates it along with a recently released precipitation data set, using streamflow simulations. First, the existing precipitation data set issued by the Commission for the Hydrology of the Rhine basin (CHR), originally covering the period 1961–1995, was extended until 2008 using a number of additional precipitation data sets. Next, the extended version of the CHR, together with E-OBS Version 4 (ECA & D gridded data set) were evaluated for their performance in the Rhine basin for extreme events. Finally, the two aforementioned precipitation data sets and a meteorological reanalysis data set were used to force a hydrological model, evaluating the influence of different precipitation forcings on the annual mean and extreme discharges compared to observational discharges for the period from 1990 until 2008. The extended version of CHR showed good agreement in terms of mean annual cycle, extreme discharge (both high and low flows), and spatial distribution of correlations with observed discharge. E-OBS performed well with respect to extreme discharge. However, its performance of the mean annual cycle in winter was rather poor and remarkably well in the summer. Also, CHR08 outperformed E-OBS in terms of temporal correlations in most of the analyzed sub-catchment means. The length extension for the CHR and the even longer length of E-OBS permit the assessment of extreme discharge and precipitation values with lower uncertainty for longer return periods. This assessment classifies both of the presented precipitation data sets as possible reference data sets for future studies in hydrological applications.

Publications Copernicus