Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 16, issue 6 | Copyright

Special issue: Latest advances and developments in data assimilation for...

Hydrol. Earth Syst. Sci., 16, 1635-1645, 2012
https://doi.org/10.5194/hess-16-1635-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Jun 2012

Research article | 08 Jun 2012

Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction

B. T. Gouweleeuw1, A. I. J. M. van Dijk1, J. P. Guerschman1, P. Dyce1, and M. Owe2 B. T. Gouweleeuw et al.
  • 1CSIRO Land and Water, Canberra, ACT, Australia
  • 2NASA/Goddard Space Flight Center, Greenbelt, MD, USA

Abstract. The large observation footprint of low-frequency satellite microwave emissions complicates the interpretation of near-surface soil moisture retrievals. While the effect of sub-footprint lateral heterogeneity is relatively limited under unsaturated conditions, open water bodies (if not accounted for) cause a strong positive bias in the satellite-derived soil moisture retrieval. This bias is generally assumed static and associated with large, continental lakes and coastal areas. Temporal changes in the extent of smaller water bodies as small as a few percent of the sensor footprint size, however, can cause significant and dynamic biases. We analysed the influence of such small open water bodies on near-surface soil moisture products derived from actual (non-synthetic) data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) for three areas in Oklahoma, USA. Differences between on-ground observations, model estimates and AMSR-E retrievals were related to dynamic estimates of open water fraction, one retrieved from a global daily record based on higher frequency AMSR-E data, a second derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and a third through inversion of the radiative transfer model, used to retrieve soil moisture. The comparison demonstrates the presence of relatively small areas (<0.05) of open water in or near the sensor footprint, possibly in combination with increased, below-critical vegetation density conditions (optical density <0.8), which contribute to seasonally varying biases in excess of 0.2 (m3 m−3) soil water content. These errors need to be addressed, either through elimination or accurate characterisation, if the soil moisture retrievals are to be used effectively in a data assimilation scheme.

Publications Copernicus
Special issue
Download
Citation
Share