Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 16, issue 9 | Copyright
Hydrol. Earth Syst. Sci., 16, 3233-3247, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Sep 2012

Research article | 10 Sep 2012

Measurement and modelling of evaporation from a coastal wetland in Maputaland, South Africa

A. D. Clulow1, C. S. Everson1, M. G. Mengistu1, C. Jarmain1, G. P. W. Jewitt1, J. S. Price2, and P.-L. Grundling2,3 A. D. Clulow et al.
  • 1Centre for Water Resources Research, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
  • 2Department of Geography & Environmental Management, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
  • 3Centre of Environmental Management, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa

Abstract. The surface renewal (SR) method was used to determine the long-term (12 months) total evaporation (ET) from the Mfabeni Mire with calibration using eddy covariance during two window periods of approximately one week each. The SR method was found to be inexpensive, reliable and with low power requirements for unattended operation.

Despite maximum ET rates of up to 6.0 mm day−1, the average summer (October to March) ET was lower (3.2 mm day−1) due to early morning cloud cover that persisted until nearly midday at times. This reduced the daily available energy, and the ET was lower than expected despite the available water and high average wind speeds. In winter (May to September), there was less cloud cover but the average ET was only 1.8 mm day−1 due to plant senescence. In general ET was suppressed by the inflow of humid air (low vapour pressure deficit) and the comparatively low leaf area index of the wetland vegetation. The accumulated ET over 12 months was 900 mm. Daily ET estimates were compared to the Priestley-Taylor model results and a calibration α = 1.0 (R2 = 0.96) was obtained for the site. A monthly crop factor (Kc) was determined for the standardised FAO-56 Penman-Monteith. However, Kc was variable in some months and should be used with caution for daily ET modelling.

These results represent not only some of the first long-term measurements of ET from a wetland in southern Africa, but also one of the few studies of actual ET in a subtropical peatland in the Southern Hemisphere. The study provides wetland ecologists and hydrologists with guidelines for the use of two internationally applied models for the estimation of wetland ET within a coastal, subtropical environment and shows that wetlands are not necessarily high water users.

Publications Copernicus