Articles | Volume 17, issue 4
https://doi.org/10.5194/hess-17-1265-2013
https://doi.org/10.5194/hess-17-1265-2013
Research article
 | 
02 Apr 2013
Research article |  | 02 Apr 2013

Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks

V. Moya Quiroga, A. Mano, Y. Asaoka, S. Kure, K. Udo, and J. Mendoza

Related authors

Modeling glacier melt and runoff in a high-altitude headwater catchment in the Cordillera Real, Andes
T. Kinouchi, T. Liu, J. Mendoza, and Y. Asaoka
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-13093-2013,https://doi.org/10.5194/hessd-10-13093-2013, 2013
Revised manuscript not accepted
Probabilistic estimation of glacier volume and glacier bed topography: the Andean glacier Huayna West
V. Moya Quiroga, A. Mano, Y. Asaoka, K. Udo, S. Kure, and J. Mendoza
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-3931-2013,https://doi.org/10.5194/tcd-7-3931-2013, 2013
Revised manuscript not accepted

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci., 27, 627–645, https://doi.org/10.5194/hess-27-627-2023,https://doi.org/10.5194/hess-27-627-2023, 2023
Short summary
A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023,https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Precipitation biases and snow physics limitations drive the uncertainties in macroscale modeled snow water equivalent
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022,https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022,https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Recent hydrological response of glaciers in the Canadian Rockies to changing climate and glacier configuration
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022,https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary

Cited articles

Abbott, M. B., Bathurrst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrologycal System – Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically based, distributed modelling system, J. Hydrol., 87, 61–77, 1986.
Agha, S. R. and Alnahhal, M. J.: Neural network and multiple linear regression to predict school children dimensions for ergonometric school furniture design, Appl. Ergonom., 43, 979–984, 2012.
Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607–1618, https://doi.org/10.5194/hess-13-1607-2009, 2009.
Allen, R. G., Pareira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper 56, Food and Agriculture Organization, Rome, 1998.
Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010.
Download