Corrigendum to

J. H. Lee1,2, J. Timmermans2, Z. Su2, and M. Mancini1

1Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
2ITC, Geo-Information Science and Earth Observation of the University of Twente, Enschede, the Netherlands

Correspondence to: M. Mancini (marco.mancini@polimi.it)

We would like to inform you that there is a mistake in the following sentence on p. 4295 (left column):
In EnKF, the key to success is the quality of observations used as a true field (a priori).

The correct sentence should read:
In EnKF, the key to success is the quality of observations used as a true field.

In addition, the following sentence on p. 4296 (end of left column) should be deleted:
DEnkF was chosen in order to update ensemble SEBS heat flux pool with BREB estimates considered as “a priori”.

There is also a mistake in Fig. 2 (Step 5) on p. 4294. You will find the correct Fig. 2 on the following page.
Fig. 2. Conceptual diagram for the determination of roughness via EnKF.

Generation of ensemble pool: Gaussian or non-Gaussian distributed random SEBS model input (e.g. NDVI or LAI)

Propagation from ensemble pool at Step 1: SEBS model state ensemble pool (e.g. parameter or heat flux)

Selection of reliable heat flux true field (e.g. H, LE or both), depending on soil moisture, instrument error, or model error propagation

Implementation of EnKF using model state (Step 2) and true field (Step 3)

To inversely track back up to input parameter (e.g. Zom) ensemble members that yielded EnKF heat flux final analysis by minimizing:

\[J = \Phi (Y(x)^{\text{sim}}, Y^{\text{EnKF}}) \]

Where, \(Y^{\text{sim}} \) is simulated model states, \(Y^{\text{EnKF}} \) is EnKF final analysis, \(x \) is an input parameter to be inversely estimated.

To filter out uncertain parameters in ensemble member candidates selected from Step 5 (e.g. criterion: frequency analysis (Fig.4), atmospheric stability (considering unstable only when \(H \) is greater than 150 W/m²) or vegetation index)

Fig. 2. Conceptual diagram for determination of aerodynamic roughness via EnKF.