Supplementary Material to paper ‘Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis’

Thomas A McMahon, Murray C Peel, Lisa Lowe, R Srikanthan, Tim R McVicar

This supplementary material consists of a list of symbols and variables used in the paper and in the following 21 sections. Section S1 discusses data used or referred to in the sections. Section S2 addresses the computation of some common meteorological variables and Section S3 outlines the computation of net solar radiation. The application of the evaporation models, Penman and Penman-Monteith, is discussed in Sections S4 and S5. Computation of Class-A pan evaporation by the PenPan model is outlined in Section S6. Actual evaporation estimates using Morton, and Advection-Aridity and like models are discussed in Sections S7 and S8. Section S9 describes the computation of potential evaporation by several other models. Two methods to estimate deep lake evaporation where advected energy and heat storage should be accounted for are outlined in Section S10 and Section S11 describes the application of four methods to estimate shallow lake evaporation. The next four sections deal with evaporation from lakes covered by vegetation (Section S12), estimating potential evaporation in rainfall-runoff modelling (Section S13), estimating evaporation from intercepted rainfall (Section S14) and estimating bare soil evaporation (Section S15). In Section S16 there is a discussion of Class-A pan evaporation equations and pan coefficients. Section S17 includes a summary of published evaporation estimates. Section S18 is a summary of a comparison of evaporation estimates by 14 models for six sites across Australia. Detailed worked examples for most models are carried out in Section S19. Section S20 is a Fortran 90 listing of Morton’s WREVAP program and Section S21 is a worked example of Morton’s CRAE, CRWE and CRLE models within the WREVAP framework.

List of Supplementary Material

List of variables and symbols in the paper and supplementary sections excluding Sections 20 and 21

Section S1 Data
Section S2 Computation of some common variables
Section S3 Estimating net solar radiation
Section S4 Penman model
Section S5 Penman-Monteith and FAO-56 Reference Crop models
Section S6 PenPan model
Section S7 Morton models
Section S8 Advection-Aridity and like models
Section S9 Additional evaporation equations
Section S10 Estimating deep lake evaporation
Section S11 Estimating shallow lake evaporation
Section S12 Estimating evaporation from lakes covered by vegetation
Section S13 Estimating potential evaporation in rainfall-runoff modelling
Section S14 Estimating evaporation of intercepted rainfall
Section S15 Estimating bare soil evaporation
Section S16 Class-A pan evaporation equations and pan coefficients
Section S17 Comparing published evaporation estimates
Section S18 Comparing evaporation estimates based on measured climate data for six Australian automatic weather stations
Section S19 Worked examples
Section S20 Listing of Fortran 90 version of Morton’s WREVAP program
Section S21 Worked example of Morton’s CRAE, CRWE and CRLE models within the WREVAP framework
References for Supplementary Material
Table S1 Values of specific constants
Table S2 Roughness height, aerodynamic and surface resistance of typical surfaces
Table S3 Albedo values
Table S4 Median, 10th and 90th percentile monthly evaporation based on data recorded at the 68 Australian AWSs for three Penman wind functions, and for FAO-56 Reference Crop and Priestley-Taylor algorithms expressed as a percentage of the Penman (1948) median estimate
Table S5 Guideline for defining shallow and deep lakes and the methods to estimate lake evaporation
Table S6 Mean monthly guarded Class-A evaporation pan coefficients for 68 Australian locations
Table S7 Comparison of equations to estimate evaporation from a lake covered with vegetation
Table S8 Measured values of Priestley-Taylor coefficient (α_{PT})
Table S9 Effect of type and length fetch, wind speed and humidity on Class-A pan coefficients without bird-guard
Table S10 Published references listing annual Class-A pan coefficients based on the Penman equation with wind functions of Penman (1948) and Penman (1956), Reference Crop equation and Priestley-Taylor equation
Table S11 Monthly Class-A evaporation pan coefficients for selected Australian lakes
Table S12 Annual Class-A evaporation pan coefficients for selected Australian lakes
Table S13 Comparison of annual estimates of evaporation (mm day$^{-1}$) at six Australian locations by 13 daily and monthly models plus Class-A pan and mean annual rainfall for period January 1979 to March 2010
Figure S1 Location of the 68 Automatic Weather Stations and Class-A evaporation pans (of which 39 pans are high quality) used in the analyses
Figure S2 Plot showing Priestley-Taylor pan coefficients against mean annual unscreened Class-A pan evaporation based on six years of climate station data in Jordon (Weiβ and Menzel, 2008)

Figure S3 Comparison of monthly PenPan evaporation and Class-A pan evaporation for 68 Australian climate stations
List of variables and symbols in the paper and supplementary sections excluding Sections S20 and S21

<table>
<thead>
<tr>
<th>Variable/symbol</th>
<th>Description</th>
<th>Units*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Advection-Aridity model</td>
<td>symbol</td>
</tr>
<tr>
<td>AWBM</td>
<td>Rainfall-runoff model</td>
<td>symbol</td>
</tr>
<tr>
<td>AWS</td>
<td>Automatic Weather Station</td>
<td>symbol</td>
</tr>
<tr>
<td>BC</td>
<td>Blaney-Criddle evapotranspiration model</td>
<td>symbol</td>
</tr>
<tr>
<td>BS</td>
<td>Brutsaert-Stricker evaporation model</td>
<td>symbol</td>
</tr>
<tr>
<td>CR</td>
<td>Complementary Relationship</td>
<td>symbol</td>
</tr>
<tr>
<td>CRAE</td>
<td>Complementary Relationship Areal Evapotranspiration</td>
<td>symbol</td>
</tr>
<tr>
<td>CRLE</td>
<td>Complementary Relationship Lake Evaporation</td>
<td>symbol</td>
</tr>
<tr>
<td>CRWE</td>
<td>Complementary Relationship Wet-surface Evaporation</td>
<td>symbol</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
<td>symbol</td>
</tr>
<tr>
<td>FAO56 RC</td>
<td>FAO-56 Reference Crop model</td>
<td>symbol</td>
</tr>
<tr>
<td>GG</td>
<td>Granger-Gray evaporation model</td>
<td>symbol</td>
</tr>
<tr>
<td>HS</td>
<td>Hargreaves-Samani evapotranspiration model</td>
<td>symbol</td>
</tr>
<tr>
<td>M</td>
<td>Month</td>
<td>symbol</td>
</tr>
<tr>
<td>Mo</td>
<td>Morton evaporation model</td>
<td>symbol</td>
</tr>
<tr>
<td>Ma</td>
<td>Makkink evaporation equation</td>
<td>symbol</td>
</tr>
<tr>
<td>modH</td>
<td>Modified Hargreaves evaporation model</td>
<td>symbol</td>
</tr>
<tr>
<td>PM</td>
<td>Penman-Monteith evapotranspiration model</td>
<td>symbol</td>
</tr>
<tr>
<td>PET</td>
<td>Potential evapotranspiration</td>
<td>symbol</td>
</tr>
<tr>
<td>PT</td>
<td>Priestley-Taylor evaporation model</td>
<td>symbol</td>
</tr>
<tr>
<td>P48</td>
<td>Penman equation with 1948 wind function</td>
<td>symbol</td>
</tr>
<tr>
<td>P56</td>
<td>Penman equation with 1956 wind function</td>
<td>symbol</td>
</tr>
<tr>
<td>SILO</td>
<td>An enhanced Australian climate database</td>
<td>symbol</td>
</tr>
<tr>
<td>SW</td>
<td>Shuttleworth-Wallace model</td>
<td>symbol</td>
</tr>
<tr>
<td>SHE</td>
<td>Système Hydrologique Européen rainfall-runoff model</td>
<td>symbol</td>
</tr>
<tr>
<td>SIMHYD</td>
<td>Rainfall-runoff model</td>
<td>symbol</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Assessment Tool</td>
<td>symbol</td>
</tr>
<tr>
<td>Th</td>
<td>Thornthwaite evapotranspiration model</td>
<td>symbol</td>
</tr>
<tr>
<td>TIN</td>
<td>Triangular irregular networks</td>
<td>symbol</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Tu</td>
<td>Turc evaporation model symbol</td>
<td></td>
</tr>
<tr>
<td>WREVAP</td>
<td>Program combining three Morton models CRAE, CRWE and CRLE symbol</td>
<td></td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evaporating area m^2</td>
</tr>
<tr>
<td>A_L</td>
<td>Lake area (in Kohler and Parmele (1967) procedure) $km^2, (m^2)$</td>
</tr>
<tr>
<td>A_W</td>
<td>Net water advected energy during Δt (net inflow from inflows and outflows of water) mm day$^{-1}$</td>
</tr>
<tr>
<td>A_e</td>
<td>Available energy (sensible and latent heat) above canopy MJ m$^{-2}$ day$^{-1}$</td>
</tr>
<tr>
<td>A_p</td>
<td>Gradient in Equation (S13.1) undefined</td>
</tr>
<tr>
<td>A_w</td>
<td>Net water advected energy during Δt mm day$^{-1}$</td>
</tr>
<tr>
<td>A_s</td>
<td>Surface area of the lake m^2</td>
</tr>
<tr>
<td>A_{ss}</td>
<td>Available energy at sub-strate MJ m$^{-2}$ day$^{-1}$</td>
</tr>
<tr>
<td>A_{i+1}, A_i</td>
<td>Area of adjacent layers m^2</td>
</tr>
<tr>
<td>a</td>
<td>Coefficient undefined</td>
</tr>
<tr>
<td>a_{th}</td>
<td>Exponent in Thornthwaite 1948 procedure undefined</td>
</tr>
<tr>
<td>a_p</td>
<td>Constant in PenPan equation dimensionless</td>
</tr>
<tr>
<td>a_s</td>
<td>Constant for Ångström –Prescott formula dimensionless</td>
</tr>
<tr>
<td>a_o</td>
<td>Constant dimensionless</td>
</tr>
<tr>
<td>B</td>
<td>Bowen Ratio dimensionless</td>
</tr>
<tr>
<td>B_p</td>
<td>Intercept in Equation (S13.1) undefined</td>
</tr>
<tr>
<td>b</td>
<td>Coefficient or slope of the regression between two variables undefined</td>
</tr>
<tr>
<td>b_0</td>
<td>Constant, or constant in CRAE and CRWE models dimensionless</td>
</tr>
<tr>
<td>b_s</td>
<td>Constant for Ångström –Prescott formula dimensionless</td>
</tr>
<tr>
<td>b_{var}</td>
<td>Working variable undefined</td>
</tr>
<tr>
<td>b_1, b_2</td>
<td>Empirical coefficients for Morton’s procedure W m$^{-2}$</td>
</tr>
<tr>
<td>C</td>
<td>Constant $= 13$ m m</td>
</tr>
<tr>
<td>C_{HS}</td>
<td>Hargreaves-Samani working coefficient undefined</td>
</tr>
<tr>
<td>C_o</td>
<td>Cloud cover oktas</td>
</tr>
<tr>
<td>C_f</td>
<td>Fraction of cloud cover dimensionless</td>
</tr>
<tr>
<td>C_u</td>
<td>Wind function coefficient undefined</td>
</tr>
<tr>
<td>C_{D}</td>
<td>Number of tenths of the sky covered by cloud dimensionless</td>
</tr>
<tr>
<td>C_{atm}</td>
<td>Atmospheric conductance m s$^{-1}$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>C_{can}</td>
<td>Canopy conductance</td>
</tr>
<tr>
<td>C_{emp}</td>
<td>Empirical coefficient</td>
</tr>
<tr>
<td>C_{ca}, C_{su}</td>
<td>Working variables</td>
</tr>
<tr>
<td>C_{ret}</td>
<td>Amount of water retained on the canopy</td>
</tr>
<tr>
<td>c</td>
<td>Parameter in linear Budyko-type relationship</td>
</tr>
<tr>
<td>c_a</td>
<td>Specific heat of air</td>
</tr>
<tr>
<td>c_o</td>
<td>Constant</td>
</tr>
<tr>
<td>c_s</td>
<td>Volumetric heat capacity of soil</td>
</tr>
<tr>
<td>c_w</td>
<td>Specific heat of water</td>
</tr>
<tr>
<td>c_1</td>
<td>Constant = 0.61</td>
</tr>
<tr>
<td>c_2</td>
<td>Constant = 0.12</td>
</tr>
<tr>
<td>D</td>
<td>Day or dimensionless relative drying power</td>
</tr>
<tr>
<td>DoY</td>
<td>Day of Year</td>
</tr>
<tr>
<td>D_p</td>
<td>Dimensionless relative drying power</td>
</tr>
<tr>
<td>d</td>
<td>Zero plane displacement height</td>
</tr>
<tr>
<td>$daymon$</td>
<td>Number of days in month</td>
</tr>
<tr>
<td>d_r</td>
<td>Relative distance between the earth and the sun</td>
</tr>
<tr>
<td>d_s</td>
<td>Effective soil depth</td>
</tr>
<tr>
<td>d_o</td>
<td>Constant</td>
</tr>
<tr>
<td>E</td>
<td>Surface evaporation</td>
</tr>
<tr>
<td>$Elev$</td>
<td>Elevation above sea level</td>
</tr>
<tr>
<td>E_{Act}</td>
<td>Actual evaporation rate</td>
</tr>
<tr>
<td>E_{EQ}</td>
<td>Equilibrium evaporation rate</td>
</tr>
<tr>
<td>E_{Mak}</td>
<td>Makkink potential evaporation</td>
</tr>
<tr>
<td>E_{PenPan}</td>
<td>Modelled Class-A (unscreened) pan evaporation</td>
</tr>
<tr>
<td>E_l</td>
<td>Lake evaporation on day i</td>
</tr>
<tr>
<td>E_{pa}</td>
<td>Working variable</td>
</tr>
<tr>
<td>$EP2, EP3, EP5$</td>
<td>Various definitions of potential evaporation</td>
</tr>
<tr>
<td>E_{SW}</td>
<td>Shuttleworth-Wallace combined evaporation from vegetation and soil</td>
</tr>
<tr>
<td>$E_{PT}(T_e)$</td>
<td>Wet-environment evaporation estimated by Priestley-Taylor at T_e</td>
</tr>
<tr>
<td>$E_{Pen,j}$</td>
<td>Penman estimate of evaporation for specific period</td>
</tr>
<tr>
<td>E_{DL}</td>
<td>Evaporation from a deep lake</td>
</tr>
<tr>
<td>E_L</td>
<td>Lake evaporation large enough to be unaffected by the upwind</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>E_{McJ}</td>
<td>Evaporation from a water body using McJannet et al (2008a)</td>
</tr>
<tr>
<td>E_{PT}</td>
<td>Priestley-Taylor potential evaporation</td>
</tr>
<tr>
<td>$E_{Pan,j}$</td>
<td>Monthly (daily) Class-A pan data in month (day) j</td>
</tr>
<tr>
<td>E_{Pan}</td>
<td>Daily Class-A pan evaporation</td>
</tr>
<tr>
<td>E_{Pen}</td>
<td>Penman potential evaporation</td>
</tr>
<tr>
<td>E_{PenOW}</td>
<td>Penman open-surface water evaporation</td>
</tr>
<tr>
<td>E_{pot}</td>
<td>Potential evaporation (in the land environment) or pan-size wet surface evaporation</td>
</tr>
<tr>
<td>E_{SL}</td>
<td>Shallow lake evaporation</td>
</tr>
<tr>
<td>E_s</td>
<td>Evaporation component due to net heating</td>
</tr>
<tr>
<td>E_{can}</td>
<td>Transpiration from canopy</td>
</tr>
<tr>
<td>E_{soil}</td>
<td>Soil evaporation</td>
</tr>
<tr>
<td>E_{water}</td>
<td>Evaporation from standing water</td>
</tr>
<tr>
<td>\bar{E}_{Trans}</td>
<td>Mean transpiration</td>
</tr>
<tr>
<td>E_{inter}</td>
<td>Mean interception evaporation</td>
</tr>
<tr>
<td>$E_{wetland}$</td>
<td>Evapotranspiration from the wetland</td>
</tr>
<tr>
<td>E_{pot}</td>
<td>Mean annual catchment potential evapotranspiration</td>
</tr>
<tr>
<td>E_{Soil}</td>
<td>Mean soil evaporation</td>
</tr>
<tr>
<td>$E_{L,d}$</td>
<td>Daily estimate of lake evaporation from Webb (1966) equation</td>
</tr>
<tr>
<td>E'_pan</td>
<td>Daily Class-A pan evaporation from Webb (1966) equation</td>
</tr>
<tr>
<td>E'_{PenOW}</td>
<td>Open-water evaporation based on modified Penman equation incorporating aerodynamic resistance</td>
</tr>
<tr>
<td>E_{1st}, E_{2nd}</td>
<td>Radiation and aerodynamic terms respectively in the PM model</td>
</tr>
<tr>
<td>$\bar{E}_{Th,j}$</td>
<td>Thornthwaite (1948) estimate of mean monthly PET for month j</td>
</tr>
<tr>
<td>E_{SLX}</td>
<td>Average lake evaporation for a crosswind width of x m</td>
</tr>
<tr>
<td>\bar{E}_{Penman}</td>
<td>Average daily stage 1 evaporation which is assumed to be at or near the rate of Penman evaporation</td>
</tr>
<tr>
<td>\bar{E}_{Act}</td>
<td>Mean annual catchment evaporation</td>
</tr>
<tr>
<td>ET_{Act}</td>
<td>Actual daily evaporation</td>
</tr>
<tr>
<td>ET_c</td>
<td>Well-watered crop evapotranspiration in a semi-arid windy environment</td>
</tr>
<tr>
<td>ET^{BS}_{Act}</td>
<td>Actual evapotranspiration estimated by Brutsaert-Stricker equation</td>
</tr>
<tr>
<td>ET^{GG}_{Act}</td>
<td>Granger-Gray actual evapotranspiration</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>ET_{SJ}</td>
<td>Actual evapotranspiration based on the Szilagyi-Jozsa equation</td>
</tr>
<tr>
<td>ET_{BC}</td>
<td>Evaporation based on the Blaney-Criddle method without height adjustment</td>
</tr>
<tr>
<td>$ET_{BC H}$</td>
<td>Evaporation based on the Blaney-Criddle method with height adjustment</td>
</tr>
<tr>
<td>ET_{Act}^{Mo}</td>
<td>Morton’s estimate of actual areal evapotranspiration</td>
</tr>
<tr>
<td>ET_{Pot}^{Mo}</td>
<td>Morton’s estimate of potential evapotranspiration</td>
</tr>
<tr>
<td>ET_{Wet}^{Mo}</td>
<td>Morton’s estimate of wet-environmental areal evapotranspiration</td>
</tr>
<tr>
<td>ET_{HS}</td>
<td>Hargreaves-Samani reference crop evapotranspiration</td>
</tr>
<tr>
<td>$ET_{Harg,j}$</td>
<td>Modified Hargreaves monthly potential evapotranspiration (month j)</td>
</tr>
<tr>
<td>ET_{p}</td>
<td>Potential evaporation of the land environment</td>
</tr>
<tr>
<td>ET_{PET}</td>
<td>Daily potential evaporation</td>
</tr>
<tr>
<td>ET_{PM}</td>
<td>Penman-Monteith potential evapotranspiration</td>
</tr>
<tr>
<td>ET_{Pot}</td>
<td>Potential evapotranspiration</td>
</tr>
<tr>
<td>ET_{RC}</td>
<td>Reference crop evapotranspiration</td>
</tr>
<tr>
<td>ET_{RCsh}</td>
<td>Reference crop evapotranspiration for short grass (0.12 m high)</td>
</tr>
<tr>
<td>ET_{Rcta}</td>
<td>Reference crop evapotranspiration for tall grass (0.5 m high)</td>
</tr>
<tr>
<td>ET_{Turc}</td>
<td>Turec’s reference crop evapotranspiration</td>
</tr>
<tr>
<td>ET_{Wet}</td>
<td>Wet environment areal evapotranspiration</td>
</tr>
<tr>
<td>ET_{eqPM}</td>
<td>Daily equivalent Penman-Monteith potential evapotranspiration</td>
</tr>
<tr>
<td>ET_{Act}</td>
<td>Mean annual catchment evapotranspiration</td>
</tr>
<tr>
<td>E_α</td>
<td>Aerodynamic component of Penman’s equation; regional drying power of atmosphere; evaporative component due to wind</td>
</tr>
<tr>
<td>E_{Larea}</td>
<td>Estimate of open-surface water evaporation as a function of lake area</td>
</tr>
<tr>
<td>$E_{fw,j}$</td>
<td>Monthly (daily) open water evaporation in month (day) j</td>
</tr>
<tr>
<td>E_{fw}</td>
<td>Daily open water evaporation</td>
</tr>
<tr>
<td>E_{ic}</td>
<td>Evaporation from an irrigation channel</td>
</tr>
<tr>
<td>$E_{soil(t)}$</td>
<td>Cumulative bare soil evaporation up to time t</td>
</tr>
<tr>
<td>$E_{stage 1}$</td>
<td>Cumulative stage 1 bare soil evaporation</td>
</tr>
<tr>
<td>e</td>
<td>Turec-Pike parameter</td>
</tr>
<tr>
<td>e_0, e_1, \ldots, e_5</td>
<td>Coefficients in Blaney-Criddle model</td>
</tr>
<tr>
<td>F</td>
<td>Upwind grass fetch</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>FET</td>
<td>Fetch or length of the identified surface</td>
</tr>
<tr>
<td>F<sub>100</sub></td>
<td>Working variable</td>
</tr>
<tr>
<td>f</td>
<td>Fu-Zhang parameter</td>
</tr>
<tr>
<td>f(φ)</td>
<td>Aridity function</td>
</tr>
<tr>
<td>f(u)</td>
<td>Wind speed function</td>
</tr>
<tr>
<td>f(u<sub>2</sub>)</td>
<td>Wind speed function at u<sub>2</sub></td>
</tr>
<tr>
<td>f(u)<sub>48</sub></td>
<td>1948 Penman wind function</td>
</tr>
<tr>
<td>f(u)<sub>56</sub></td>
<td>1956 Penman wind function</td>
</tr>
<tr>
<td>f(u)<sub>LIN</sub></td>
<td>Linacre Penman wind function</td>
</tr>
<tr>
<td>f<sub>Pan</sub>(u)</td>
<td>Wind function for Class-A pan</td>
</tr>
<tr>
<td>f<sub>dir</sub></td>
<td>Fraction of R<sub>s</sub> that is direct</td>
</tr>
<tr>
<td>f<sub>v</sub></td>
<td>Vapour transfer coefficient in Morton’s procedure</td>
</tr>
<tr>
<td>f<sub>z</sub></td>
<td>Constant in Morton’s procedure</td>
</tr>
<tr>
<td>G</td>
<td>Soil heat flux</td>
</tr>
<tr>
<td>G<sub>L</sub></td>
<td>Monthly solar and waterborne energy input into lake for Morton’s procedure</td>
</tr>
<tr>
<td>G<sub>W</sub></td>
<td>Daily change in heat storage of water body</td>
</tr>
<tr>
<td>G<sub>W(t)</sub></td>
<td>dH(t)/dt</td>
</tr>
<tr>
<td>G<sub>LB</sub></td>
<td>Available solar and waterborne heat energy at the beginning of the month for Morton’s procedure</td>
</tr>
<tr>
<td>G<sub>LE</sub></td>
<td>Available solar and waterborne heat energy at the end of the month for Morton’s procedure</td>
</tr>
<tr>
<td>G<sub>W[t], G_W[t+1]</sub></td>
<td>Value of G<sub>W</sub> computed [t] and [t + 1] months previously for Morton’s procedure</td>
</tr>
<tr>
<td>G<sub>W0</sub></td>
<td>Solar and waterborne heat input for Morton’s procedure</td>
</tr>
<tr>
<td>GW<sub>in</sub></td>
<td>Groundwater inflows to lake</td>
</tr>
<tr>
<td>GW<sub>out</sub></td>
<td>Groundwater outflows from lake</td>
</tr>
<tr>
<td>G<sub>W</sub></td>
<td>Delayed energy input into the lake for Morton’s procedure</td>
</tr>
<tr>
<td>G<sub>g</sub></td>
<td>Dimensionless relative evaporation parameter</td>
</tr>
<tr>
<td>G̃</td>
<td>Mean heat conductance into the soil</td>
</tr>
<tr>
<td>G<sub>j</sub></td>
<td>Coefficient in Equation (S16.4)</td>
</tr>
<tr>
<td>G<sub>sc</sub></td>
<td>Solar constant</td>
</tr>
<tr>
<td>G<sub>DS</sub></td>
<td>Mean annual deep seepage</td>
</tr>
<tr>
<td>g</td>
<td>Working variable</td>
</tr>
<tr>
<td>H</td>
<td>Sensible heat flux</td>
</tr>
<tr>
<td>H̃</td>
<td>Mean sensible heat flux</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>$H(t)$</td>
<td>Total heat energy content of the lake per unit area of the lake surface at time t</td>
</tr>
<tr>
<td>h</td>
<td>Mean height of the roughness obstacles (including crop)</td>
</tr>
<tr>
<td>h_w</td>
<td>Water depth</td>
</tr>
<tr>
<td>h_i, h_{i+1}</td>
<td>Depth of water in lake on day i and day $i + 1$ respectively</td>
</tr>
<tr>
<td>\bar{h}</td>
<td>Mean lake depth</td>
</tr>
<tr>
<td>hr_{day}</td>
<td>Mean monthly daylight hours in month</td>
</tr>
<tr>
<td>i</td>
<td>Monthly heat index</td>
</tr>
<tr>
<td>$i, i-1$</td>
<td>Index for days</td>
</tr>
<tr>
<td>I</td>
<td>Annual heat index</td>
</tr>
<tr>
<td>I_j</td>
<td>Intercept in Equation (S16.4)</td>
</tr>
<tr>
<td>$j, j-1$</td>
<td>Index for months</td>
</tr>
<tr>
<td>K_c</td>
<td>Crop coefficient</td>
</tr>
<tr>
<td>K_E</td>
<td>Coefficient that represents the efficiency of the vertical transport of water vapour</td>
</tr>
<tr>
<td>K_{us}</td>
<td>Unsaturated hydraulic conductivity</td>
</tr>
<tr>
<td>K_j</td>
<td>Monthly (daily) Class-A pan coefficient</td>
</tr>
<tr>
<td>K_{ratio}</td>
<td>Ratio of incoming solar radiation to clear sky radiation</td>
</tr>
<tr>
<td>$K_{P_{an}}$</td>
<td>Class-A pan coefficient</td>
</tr>
<tr>
<td>k</td>
<td>von Kármán’s constant</td>
</tr>
<tr>
<td>lat</td>
<td>Latitude</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LAI_{active}</td>
<td>Active (sunlit) leaf area index</td>
</tr>
<tr>
<td>M</td>
<td>Month of the year</td>
</tr>
<tr>
<td>m</td>
<td>Number of horizontal layers</td>
</tr>
<tr>
<td>N</td>
<td>Total day length</td>
</tr>
<tr>
<td>n</td>
<td>Duration of sunshine hours in a day</td>
</tr>
<tr>
<td>P_d</td>
<td>Daily precipitation</td>
</tr>
<tr>
<td>$P_{M_{ca}}, P_{M_{su}}$</td>
<td>Evaporation from respectively a closed canopy and bare substrate</td>
</tr>
<tr>
<td>p</td>
<td>Mean rainfall or mean annual rainfall</td>
</tr>
<tr>
<td>P_{i+1}</td>
<td>Rainfall on day $i + 1$</td>
</tr>
<tr>
<td>P_j</td>
<td>Monthly precipitation in month j</td>
</tr>
<tr>
<td>P_{rad}</td>
<td>Pan radiation factor</td>
</tr>
<tr>
<td>p</td>
<td>Atmospheric pressure (for Morton’s procedure)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>p_s</td>
<td>Sea-level atmospheric pressure</td>
</tr>
<tr>
<td>p_y</td>
<td>Percentage of actual daytime hours for the specific day compared to the day-light hours for the entire year</td>
</tr>
<tr>
<td>Q_t</td>
<td>Heat flux increase in stored energy</td>
</tr>
<tr>
<td>Q_v</td>
<td>Heat flux advected into the water body</td>
</tr>
<tr>
<td>\bar{Q}</td>
<td>Mean runoff or mean annual runoff</td>
</tr>
<tr>
<td>Q^*</td>
<td>Net radiation</td>
</tr>
<tr>
<td>Q_{wb}</td>
<td>Net radiation at wet-bulb temperature</td>
</tr>
<tr>
<td>RH</td>
<td>Average monthly relative humidity</td>
</tr>
<tr>
<td>R_A</td>
<td>Average monthly extraterrestrial solar radiation</td>
</tr>
<tr>
<td>\bar{R}</td>
<td>Mean net radiation received</td>
</tr>
<tr>
<td>REW</td>
<td>Readily evaporable water</td>
</tr>
<tr>
<td>R_{il}</td>
<td>Incoming longwave radiation</td>
</tr>
<tr>
<td>R_{ol}</td>
<td>Outgoing longwave radiation</td>
</tr>
<tr>
<td>RH_{max}</td>
<td>Maximum daily relative humidity</td>
</tr>
<tr>
<td>RH_{mean}</td>
<td>Mean daily relative humidity</td>
</tr>
<tr>
<td>RH_{min}</td>
<td>Minimum daily relative humidity</td>
</tr>
<tr>
<td>R_a</td>
<td>Extraterrestrial radiation</td>
</tr>
<tr>
<td>R_{NPan}</td>
<td>Net radiation at Class-A pan</td>
</tr>
<tr>
<td>R_{SPan}</td>
<td>Total shortwave irradiance of pan</td>
</tr>
<tr>
<td>R_{il}</td>
<td>Incoming longwave radiation</td>
</tr>
<tr>
<td>R_n</td>
<td>Net radiation at evaporating surface at air temperature (for Morton’s procedure)</td>
</tr>
<tr>
<td>R_{ne}</td>
<td>Net radiation for the soil-plant surface at T_e for Morton’s procedure</td>
</tr>
<tr>
<td>R_{nl}</td>
<td>Net longwave radiation</td>
</tr>
<tr>
<td>R_{ns}</td>
<td>Net incoming shortwave radiation</td>
</tr>
<tr>
<td>R_{nw}</td>
<td>Net radiation at water surface</td>
</tr>
<tr>
<td>R_{ol}</td>
<td>Outgoing longwave radiation</td>
</tr>
<tr>
<td>R_s</td>
<td>Measured or estimated incoming solar radiation</td>
</tr>
<tr>
<td>R_{so}</td>
<td>Clear sky radiation</td>
</tr>
<tr>
<td>R_{can}</td>
<td>Net radiation to canopy</td>
</tr>
<tr>
<td>R_{soil}</td>
<td>Net radiation to soil</td>
</tr>
<tr>
<td>R_{water}</td>
<td>Net radiation to water based on surface water temperature</td>
</tr>
<tr>
<td>R_n</td>
<td>Net daily radiation based on water temperature</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>R_{ol}^{wa}</td>
<td>Outgoing longwave radiation based on water temperature</td>
</tr>
<tr>
<td>R_{ol}^{wb}</td>
<td>Outgoing longwave radiation based on wet-bulb temperature</td>
</tr>
<tr>
<td>R_{wb}</td>
<td>Net radiation to water based on wet-bulb temperature</td>
</tr>
<tr>
<td>R^2</td>
<td>Square of the correlation coefficient</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>r_a</td>
<td>Aerodynamic or atmospheric resistance to water vapour transport</td>
</tr>
<tr>
<td>r_c</td>
<td>Bulk stomatal resistance</td>
</tr>
<tr>
<td>r_l</td>
<td>Bulk stomatal resistance of a well-illuminated leaf</td>
</tr>
<tr>
<td>$r_{c_{lim}}$</td>
<td>Climatological resistance</td>
</tr>
<tr>
<td>r_{c0}^c</td>
<td>Aerodynamic resistance for crop height, h</td>
</tr>
<tr>
<td>r_s</td>
<td>Surface resistance</td>
</tr>
<tr>
<td>$(r_s)_c$</td>
<td>Surface resistance of a well-watered crop equivalent to FAO crop coefficient</td>
</tr>
<tr>
<td>r_a^c</td>
<td>Aerodynamic resistance between canopy source height and reference level</td>
</tr>
<tr>
<td>r_a^c</td>
<td>Bulk boundary layer resistance of vegetation elements in canopy</td>
</tr>
<tr>
<td>r_a^s</td>
<td>Aerodynamic resistance between substrate and canopy source height</td>
</tr>
<tr>
<td>r_s^c</td>
<td>Bulk stomatal resistance of canopy</td>
</tr>
<tr>
<td>r_s^s</td>
<td>Surface resistance of substrate</td>
</tr>
<tr>
<td>S</td>
<td>Proportion of bare soil</td>
</tr>
<tr>
<td>S_{con}</td>
<td>Solar constant</td>
</tr>
<tr>
<td>S_O</td>
<td>Mean water equivalent for extraterrestrial solar radiation in month j</td>
</tr>
<tr>
<td>SEE</td>
<td>Standard error of estimate</td>
</tr>
<tr>
<td>SM</td>
<td>Soil moisture level</td>
</tr>
<tr>
<td>SW_{in}</td>
<td>Surface water inflows to lake</td>
</tr>
<tr>
<td>SW_{out}</td>
<td>Surface water outflows from lake</td>
</tr>
<tr>
<td>S_c</td>
<td>Storage constant</td>
</tr>
<tr>
<td>S_{can}</td>
<td>Storage capacity of the canopy</td>
</tr>
<tr>
<td>s</td>
<td>Lake salinity for Morton’s procedure</td>
</tr>
<tr>
<td>T</td>
<td>Temperature, the generalised Turc-Pike coefficient</td>
</tr>
<tr>
<td>TEW</td>
<td>Total evaporable water</td>
</tr>
<tr>
<td>T_a</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>T_d</td>
<td>Dewpoint temperature</td>
</tr>
<tr>
<td>T_e</td>
<td>Equilibrium temperature (at evaporating surface)</td>
</tr>
<tr>
<td>T_j</td>
<td>Monthly mean daily air temperature in month j</td>
</tr>
<tr>
<td>T_{pan}</td>
<td>Mean daily pan water temperature</td>
</tr>
<tr>
<td>T_s</td>
<td>Temperature of the surface or evaporated water</td>
</tr>
<tr>
<td>T_w</td>
<td>Temperature of the water</td>
</tr>
<tr>
<td>T_{wb}</td>
<td>Wet-bulb temperature</td>
</tr>
<tr>
<td>T_{w0}</td>
<td>Temperature from previous time-step</td>
</tr>
<tr>
<td>$T_{w,i} - T_{w,i-1}$</td>
<td>Change in surface water temperature from month $j - 1$ to month j</td>
</tr>
<tr>
<td>T_{L1}, T_{L2}</td>
<td>Average lake temperature at the beginning and end of period</td>
</tr>
<tr>
<td>T_e'</td>
<td>Working estimate of the equilibrium temperature</td>
</tr>
<tr>
<td>T_{gwin}</td>
<td>Temperature of the groundwater inflows to lake</td>
</tr>
<tr>
<td>T_{gwout}</td>
<td>Temperature of the groundwater outflows from lake</td>
</tr>
<tr>
<td>T_i, T_{i-1}</td>
<td>Average air temperatures on day i and day $i - 1$ respectively</td>
</tr>
<tr>
<td>$T_{w,i}, T_{w,i-1}$</td>
<td>Surface water temperatures on day i and day $i - 1$ respectively</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum daily air temperature</td>
</tr>
<tr>
<td>T_{min}</td>
<td>Minimum daily air temperature</td>
</tr>
<tr>
<td>T_{mean}</td>
<td>Mean daily temperature</td>
</tr>
<tr>
<td>T_p</td>
<td>Temperature of precipitation</td>
</tr>
<tr>
<td>T_{swin}</td>
<td>Temperature of the surface water inflows to lake</td>
</tr>
<tr>
<td>T_{swout}</td>
<td>Temperature of the surface water outflows from lake</td>
</tr>
<tr>
<td>\bar{T}</td>
<td>Mean monthly air temperature</td>
</tr>
<tr>
<td>\bar{T}_j</td>
<td>Mean monthly air temperature in month j</td>
</tr>
<tr>
<td>$\bar{T}D_j$</td>
<td>Mean monthly difference between mean daily maximum air temperature and mean daily minimum air temperature (month j)</td>
</tr>
<tr>
<td>$T_w(z_i), T_w(z_{i+1})$</td>
<td>Water temperature at depths z_i and z_{i+1}</td>
</tr>
<tr>
<td>t</td>
<td>Cumulative time of bare soil evaporation</td>
</tr>
<tr>
<td>t_L</td>
<td>Lake lag time</td>
</tr>
<tr>
<td>t_1</td>
<td>Length of the stage-1 atmosphere-controlled bare soil evaporation period</td>
</tr>
<tr>
<td>t_{day}</td>
<td>Local time of day</td>
</tr>
<tr>
<td>t_0</td>
<td>Intermediate variable defined by Equation (S7.15)</td>
</tr>
<tr>
<td>t_m</td>
<td>Number of days in the month</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>$[t_L]$</td>
<td>Integral component of lag time</td>
</tr>
<tr>
<td>u</td>
<td>Mean daily wind speed</td>
</tr>
<tr>
<td>u_2</td>
<td>Average daily wind speed at 2 m height (original Penman 1948 and 1956 and Linacre wind function)</td>
</tr>
<tr>
<td>u_{10}</td>
<td>Average daily wind speed at 10 m height</td>
</tr>
<tr>
<td>u_{Pan}</td>
<td>Average daily wind speed over pan</td>
</tr>
<tr>
<td>u_z</td>
<td>Average daily wind speed at height z</td>
</tr>
<tr>
<td>u_*</td>
<td>Friction velocity</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>Mean wind speed</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapour pressure deficit</td>
</tr>
<tr>
<td>V_i</td>
<td>Volume of each layer</td>
</tr>
<tr>
<td>V_{1}, V_2</td>
<td>Lake volume at the beginning and end of period</td>
</tr>
<tr>
<td>VPD_{2}, VPD_{50}</td>
<td>Vapour pressure deficit at 2m and 50 m respectively</td>
</tr>
<tr>
<td>W</td>
<td>Proportion of open water</td>
</tr>
<tr>
<td>w</td>
<td>Plant available water coefficient in Zhang 2-parameter model</td>
</tr>
<tr>
<td>x</td>
<td>Cross wind width of lake</td>
</tr>
<tr>
<td>z</td>
<td>Height of wind speed measurement</td>
</tr>
<tr>
<td>z_e</td>
<td>Depth of surface soil layer</td>
</tr>
<tr>
<td>$z_{i+1} - z_i$</td>
<td>Thickness of each layer</td>
</tr>
<tr>
<td>z_h</td>
<td>Height above ground of the water vapour measurement</td>
</tr>
<tr>
<td>z_1</td>
<td>Height above ground of the wind speed measurement</td>
</tr>
<tr>
<td>z_h</td>
<td>Height of the humidity measurements</td>
</tr>
<tr>
<td>z_a</td>
<td>Zero-plane displacement</td>
</tr>
<tr>
<td>z_m</td>
<td>Height of the instrument above ground</td>
</tr>
<tr>
<td>z_o</td>
<td>Roughness length or roughness height</td>
</tr>
<tr>
<td>z_{oh}</td>
<td>Roughness length governing transfer of heat and vapour</td>
</tr>
<tr>
<td>z_{om}</td>
<td>Roughness length governing momentum transfer</td>
</tr>
<tr>
<td>z_{ow}</td>
<td>Roughness length governing water transfer</td>
</tr>
<tr>
<td>α</td>
<td>Albedo of the evaporating surface</td>
</tr>
<tr>
<td>α_A</td>
<td>Albedo for Class-A pan</td>
</tr>
<tr>
<td>α_{KP}</td>
<td>Proportion of the net addition of energy from advection and storage used in evaporation during Δt</td>
</tr>
<tr>
<td>α_{SS}</td>
<td>Albedo of ground surface surrounding evaporation pan</td>
</tr>
<tr>
<td>α_{pan}</td>
<td>Proportion of energy exchanged through sides of evaporation</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>α_{PT}</td>
<td>Priestley-Taylor coefficient</td>
</tr>
<tr>
<td>γ</td>
<td>Psychrometric constant (for Morton’s procedure)</td>
</tr>
<tr>
<td>Δ</td>
<td>Slope of the saturation vapour pressure curve</td>
</tr>
<tr>
<td>Δ'</td>
<td>$d\nu_T/dT$ slope of the saturation vapour pressure curve at T</td>
</tr>
<tr>
<td>ΔH</td>
<td>Change in heat storage (net energy gained from heat storage in the water body)</td>
</tr>
<tr>
<td>ΔQ</td>
<td>Change in stored energy during Δt</td>
</tr>
<tr>
<td>ΔS</td>
<td>Change in soil moisture storage or stored water</td>
</tr>
<tr>
<td>ΔW</td>
<td>Change in heat storage in water column during the current time step</td>
</tr>
<tr>
<td>Δt</td>
<td>Time interval</td>
</tr>
<tr>
<td>Δe</td>
<td>Slope of the saturation vapour pressure curve at temperature T_e for Morton’s procedure</td>
</tr>
<tr>
<td>Δw</td>
<td>Slope of the vapour pressure curve at water temperature</td>
</tr>
<tr>
<td>Δwb</td>
<td>Slope of the vapour pressure curve at wet-bulb temperature</td>
</tr>
<tr>
<td>$\Delta(T_e)$</td>
<td>Slope of the vapour pressure curve at temperature T_e</td>
</tr>
<tr>
<td>$\Delta H_{j,j-1}$</td>
<td>Change in heat storage from month $j - 1$ to month j for Vardavas and Fountoulakis (1996) procedure</td>
</tr>
<tr>
<td>ΔT_{wl}</td>
<td>Change in lake surface water temperature month $j - 1$ to month j</td>
</tr>
<tr>
<td>$\Delta e'$</td>
<td>Working estimate of the slope of the saturation vapour pressure curve at T_e for Morton’s procedure</td>
</tr>
<tr>
<td>δ</td>
<td>Solar declination</td>
</tr>
<tr>
<td>δh</td>
<td>Difference between heat content of inflows and outflows from lake for Morton’s procedure</td>
</tr>
<tr>
<td>δT_e</td>
<td>A small change in the equilibrium temperature</td>
</tr>
</tbody>
</table>
| $\delta
u_e = \Delta_e \delta T_e$ | undefined |
<p>| ε_s | Surface emissivity | dimensionless |
| ε | Ratio of the temperature variations in the latent heat and sensible heat contents of saturated air | dimensionless |
| ε_w | Emissivity of water | dimensionless |
| η_α, η_c, η_s | Working variables | undefined |
| θ | Sun’s altitude | degrees |
| θ_{FC} | Soil moisture content at field capacity | % |
| θ_{WP} | Soil moisture content at wilting point | % |
| λ | Latent heat of vaporisation (for Morton’s procedure) | MJ kg$^{-1}$ (W day kg$^{-1}$) |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_e</td>
<td>Working variable</td>
<td>undefined</td>
</tr>
<tr>
<td>ξ</td>
<td>Dimensionless stability factor</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Mean air density at constant pressure</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>ρ_w</td>
<td>Density of water</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant (for Morton’s procedure)</td>
<td>MJ K$^{-4}$ m$^{-2}$ day$^{-1}$ (W m$^{-2}$ K$^{-4}$)</td>
</tr>
<tr>
<td>τ</td>
<td>Time constant for the storage</td>
<td>day</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity of air</td>
<td>m2 s$^{-1}$</td>
</tr>
<tr>
<td>ν_4</td>
<td>Afternoon average vapour pressure 4 m above ground for Webb (1966) procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_a</td>
<td>Mean daily actual vapour pressure at air temperature</td>
<td>kPa</td>
</tr>
<tr>
<td>ν_d</td>
<td>Vapour pressure at the reference height</td>
<td>kPa</td>
</tr>
<tr>
<td>ν_a^*</td>
<td>Daily saturation vapour pressure at air temperature (for Morton’s procedure)</td>
<td>kPa (mbar)</td>
</tr>
<tr>
<td>ν_e^*</td>
<td>Saturation vapour pressure at T_e (for Morton’s procedure)</td>
<td>kPa (mbar)</td>
</tr>
<tr>
<td>ν_p^*</td>
<td>Saturation vapour pressure at dew point temperature for Morton’s procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_l^*</td>
<td>Afternoon average lake saturation vapour pressure for Webb (1966) procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_p^*</td>
<td>Afternoon maximum pan saturation vapour pressure for Webb (1966) procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>$(\nu_a^* - \nu_a)$</td>
<td>Vapour pressure deficit at air temperature</td>
<td>kPa</td>
</tr>
<tr>
<td>ν_s^*</td>
<td>Saturation vapour pressure at the water surface</td>
<td>kPa</td>
</tr>
<tr>
<td>ν_w^*</td>
<td>Saturation vapour pressure at the evaporating surface</td>
<td>kPa</td>
</tr>
<tr>
<td>$\nu_a(T_a)$</td>
<td>Vapour pressure at a given height above the water surface evaluated at the air temperature T_a for Vardavas and Fountoulakis (1996) procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>$\nu_a^*(T_a)$</td>
<td>Saturated vapour pressure at the water surface evaluated at air temperature T_a for Vardavas and Fountoulakis (1996) procedure</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_e^*</td>
<td>Working estimate of the saturation vapour pressure at equilibrium temperature (for Morton’s procedure)</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_T^*</td>
<td>Saturation vapour pressure at temperature, T</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_a^*</td>
<td>Saturation vapour pressure at air temperature, T_a</td>
<td>kPa</td>
</tr>
<tr>
<td>ν_s^*</td>
<td>Saturation vapour pressure at surface temperature, T_s</td>
<td>kPa</td>
</tr>
<tr>
<td>$\nu_{T_{\text{max}}}^*$</td>
<td>Saturated vapour pressure at Tmax</td>
<td>kPa</td>
</tr>
<tr>
<td>$\nu_{T_{\text{min}}}^*$</td>
<td>Saturated vapour pressure at Tmin</td>
<td>kPa</td>
</tr>
<tr>
<td>$\bar{\nu}_a$</td>
<td>Mean daily actual vapour pressure</td>
<td>kPa</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ϕ</td>
<td>Aridity index</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Ω</td>
<td>Decoupling coefficient</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ω_S</td>
<td>Sunset hour angle</td>
<td>radian</td>
</tr>
</tbody>
</table>

Where possible a consistent set of units is used throughout the paper and supplementary sections except for Sections S20 and S21 which relate to Morton’s (1983a, b and 1986) procedures. In this list of variables where the units are different from the common set, model names or references are included in the description. Non-SI units are either included in parenthesis along with the model name or the relevant reference is included in parenthesis in the description or, if listed separately, the model name or the relevant reference is also included. For some intermediate and working variables and where the source reference has not identified, the units are described as undefined.
Supplementary Material

Section S1 Data

In this section, five issues are addressed – sources of climate data in Australia, climate data used in the analyses reported in later sections, remotely sensed actual evapotranspiration, daily and monthly data, and location of meteorological stations relative to the target evaporating site.

Sources of climate data in Australia

1. In Australia at Automatic Weather Stations (AWSs) maintained by the Bureau of Meteorology and other operators, the following data as a minimum are monitored at a short time-step and are recorded as cumulative or average values over a longer interval: rainfall, temperature, humidity, wind speed and direction, and atmospheric pressure. Information is available at:

 For Australian at-site daily wind data, it is recommended that, if available, 24-hour wind run data (km day\(^{-1}\)) be used and converted to wind speed (m s\(^{-1}\)).

2. Class-A pan evaporation data are also measured on a daily basis and, at some locations, the associated temperature and wind at or near the pan water surface are also recorded. A high-quality monthly Class-A pan data set of 60 stations across Australia is listed by Jovanovic et al. (2008). (Lavery et al. (1997) identified for Australia an extended high-quality daily rainfall data set consisting of 379 gauges.)

3. In many parts of the world an alternative approach to using measured data directly is to deploy outputs from spatial interpolation and spatial modelling. If seeking to estimate evaporation at a point or localised area using data from a proximally located meteorological station, at-site data are optimal; however, these do not always exist. Specific to Australia, if seeking an estimate of evaporation for a larger area (e.g., a catchment or an administrative region) then gridded output is available. Donohue et al. (2010a; 2010b) have made available five potential evaporation formulations being: (i) Morton point; (ii) Morton areal; (iii) Penman; (iv) Priestley-Taylor; and (v) Thornthwaite in:

 It should be noted here that R. Donohue (pers. comm.) advised that “the reason Morton point potential values were so high in Donohue et al (2010b) was because, in their modelling of net radiation, they explicitly accounted for actual land-cover dynamics. Donohue et al (2010b) modelled \(R_s \) (incoming shortwave radiation) using the Bristow and Campbell (1984) model calibrated to Australian conditions (McVicar and Jupp, 1999), and combined this with remotely sensed estimates of albedo (Saunders, 1990) to model \(R_{ns} \) (net incoming shortwave radiation). \(R_{nl} \) (net longwave radiation) was modelled according to Allen et al (1998) with soil and vegetation emissivity weighted by their per-pixel fractions determined from remotely sensed data (Donohue et al., 2009). This procedure differs from Morton’s (1983a) methodology, developed over 25 years ago, when remotely sensed data were not routinely available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983a) methodology.”

 The evaporation formulations in the above web-site are available at 0.05° resolution from 1982 onwards at a daily (mm day\(^{-1}\)), a monthly (mm month\(^{-1}\)), an annual (mm year\(^{-1}\)), or an annual average (mm year\(^{-1}\)) time-step. From the same web-site, at the same spatial and
temporal resolutions as above, nine variables associated with the surface radiation balance are provided. They are: surface albedo (unitless), fractional cover (unitless), incoming longwave radiation (MJ m$^{-2}$ day$^{-1}$), incoming shortwave radiation (MJ m$^{-2}$ day$^{-1}$), outgoing longwave radiation (MJ m$^{-2}$ day$^{-1}$), outgoing shortwave radiation (MJ m$^{-2}$ day$^{-1}$), net radiation (MJ m$^{-2}$ day$^{-1}$), top-of-atmosphere radiation (MJ m$^{-2}$ day$^{-1}$), and diffuse radiation fraction (unitless). Additionally, the following reference datasets are also available including: wind speed at 2m (TIN-based (Triangular Irregular Networks), units are m s$^{-1}$), saturated vapour pressure (Pa), vapour pressure deficit (Pa), slope of the saturated vapour pressure curve (Pa K$^{-1}$), diurnal air temperature range (K), mean air temperature (K), Class-A pan evaporation modelled using the PenPan formulation (mm period$^{-1}$), and FAO-56 Reference Crop evapotranspiration (mm period$^{-1}$). It should be noted that Penman (1948) potential evaporation and PenPan evaporation are calculated with both a TIN-based wind data and a spline-based wind data. The latter for the period from 1 January 1975 can be accessed from (McVicar et al., 2008):

We prefer using the spline-based wind data for spatial modelling, and when assessing trends the TIN-based model provided improved results (Donohue et al., 2010b). The FAO-56 Reference Crop (Allen et al., 1998) evapotranspiration only uses the spline-based wind speed data. These data can be linked with basic daily meteorological data (Jones et al., 2009) including: precipitation, maximum air temperature, minimum air temperature, and actual vapour pressure (Pa) which are all available from:

Thus, there is a now a very powerful resource of freely available data for regional ecohydrological modelling across Australia. There is also available a commercially-based SILO product of many of the key meteorological grids that are required to model evaporation across Australia (Jeffrey et al., 2001).

Data used in later sections

The data used in the later sections cover the period from January 1979 to February 2010 and include daily data for Class-A pan evaporation, sunshine hours, maximum and minimum temperature, maximum and minimum humidity and average wind speed. A minimum amount of missing daily temperature (0.37%), relative humidity (0.16%), sunshine hours (0.43%) and wind speed (0.35%) data was infilled for only days in which values were available on adjacent days from which the average was used to infill. Only months with a complete record of all variables were analysed. As a result the average length of station record with all variables is 15.9 years. Some of the analyses in this paper are based on daily data for 68 stations located across Australia (Figure S1). Class-A evaporation pan and climate data were obtained from the Climate Information Services, National Climate Centre, Bureau of Meteorology. Of these stations, 39 are part of the high quality Class-A pan evaporation network (Jovanovic et al., 2008, Table 1).

Remotely sensed actual evapotranspiration
Remotely sensed estimates of actual evapotranspiration (usually combining remotely sensed data with some climate data) are becoming more accurate and more accessible to analysts who are not experts in this technology. There are three main approaches to estimate actual evapotranspiration using remote sensing, namely: (i) thermal based methods based on the land surface energy balance (e.g., Sobrino et al. (2005), Kalma et al. (2008), Jia et al. (2009), Elhaddad et al. (2011), and Yang and Wang (2011)); (ii) methods that use the vegetation (and shortwave infrared) indices (e.g., Glenn et al., 2007; 2010; Guerschman et al (2009)); and (iii) hybrid methods that combine the surface temperature and vegetation index (e.g., Carlson, 2007; Tang et al., 2010). Readers wishing to pursue such approaches are referred to the growing volume of material that is accessible in the international literature.

Daily and monthly data

Analyses of most procedures are carried out for a daily and a monthly time-step. In the daily analysis, daily values of maximum and minimum temperature, maximum and minimum relative humidity, sunshine hours and daily wind run are required. For the analysis using a monthly time-step, the average daily values for each month and for each variable are the basis of computation.

Location of meteorological stations relative to the target evaporating site

In discussing evaporation procedures, most writers are silent on where to measure meteorological data to achieve the most accurate estimate of evaporation. For estimating evaporation from lakes using Morton’s CRWE or CRLE model, land-based meteorological data can be used (Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that data measured over water have only a “…relatively minor effect…” on the estimate of lake evaporation. Morton (1986, page 378) says the CRAE, which estimate landscape evaporation (see Section 2.5.2), is different because “…the latter requires accurate temperature and humidity data from a representative [land-based] location”. (A discussion of Morton’s evaporation models is presented in Section 2.5.2 and in Section S7.)

Based on a 45,790 ha lake in Holland, Keijman and Koopmans (1973) compared Penman (1948) evaporation for seven periods over 32 days with a water balance estimate, an energy budget estimate and observed pan evaporation data, where the meteorological instruments were located on a floating raft. The authors observed that the Penman (1948) lake evaporation estimates are highly correlated and show little bias with the water balance estimates and the energy balance estimates. Based on further analysis, Keijman (1974) concluded that for estimating energy balance at the centre of a lake land-based meteorological measurements downwind from the lake are preferred over measurements upwind.

In a major study of evaporation from Lake Nasser using three floating AWS, Elsawwaf et al. (2010) compared Penman (1956) evaporation with estimates from the Bowen Ratio Energy Budget method. The Penman method exhibited negative bias (Elsawwaf et al., 2010) which is consistent with the Penman (1948) results recorded in Holland. (In Section S4, the differences expected between Penman (1948) and Penman (1956) are discussed).
Supplementary Material

Section S2 Computation of some common variables

This section includes equations to estimate common variables used in the evaporation equations. Values of specific constants are listed in Table S1.

Mean daily temperature

Mean daily temperature \(\frac{T_{max} + T_{min}}{2} \) (Allen et al., 1998, Equation 9) (S2.1)

where \(T_{max} \) and \(T_{min} \) are the maximum and minimum air temperatures (°C), respectively, recorded over a 24-hour period.

Wet-bulb temperature

\[
T_{wb} = \frac{0.00066 \times 100T_a + 4098v_a \times T_d}{0.00066 \times 100 + \frac{4098v_a}{(T_d+237.3)^2}}
\] (McJannet et al., 2008b, Equation 25) (S2.2)

where \(T_{wb} \) is wet-bulb temperature (°C), \(T_d \) is the dew point temperature (°C) and \(v_a \) is actual vapour pressure (kPa).

Dew point temperature

\[
T_d = \frac{116.9+237.3 \ln (v_a)}{16.78-\ln (v_a)}
\] (McJannet et al., 2008b, Equation 26) (S2.3)

Slope of the saturation vapour pressure curve

\[
\Delta = \frac{4098[0.6108\exp\left(\frac{17.27T_a}{T_a+237.3}\right)]}{(T_a+237.3)^2}
\] (Allen et al., 1998, Equation 13) (S2.4)

where \(\Delta \) is the slope of the saturation vapour pressure curve (kPa °C⁻¹) at the mean daily air temperature, \(T_a \) (°C).

Saturation vapour pressure at temperature, \(T \) (°C)

\[
v_T^* = 0.6108\exp\left(\frac{17.27T}{T+237.3}\right)
\] (Allen et al., 1998, Equation 11) (S2.5)

where \(v_T^* \) is the saturation vapour pressure (kPa) at temperature, \(T \) (°C).

Daily saturation vapour pressure

\[
v_a^* = \frac{v_d(T_{max}) + v_d(T_{min})}{2}
\] (Allen et al., 1998, Equation 12) (S2.6)

where \(v_a^* \) is the daily (24-hour period) saturation vapour pressure (kPa) at air temperature, and where the saturation vapour pressures are evaluated at temperatures (°C) \(T_{max} \) and \(T_{min} \).

Mean daily actual vapour pressure

\[
v_a = \frac{v_d(T_{min})^{RH_{max}} + v_d(T_{max})^{RH_{min}}}{2}
\] (Allen et al., 1998, Equation 17) (S2.7)

where \(v_a \) is the mean daily actual vapour pressure (kPa), \(RH_{max} \) is the maximum relative humidity (%) in a day, and \(RH_{min} \) is the minimum relative humidity (%) in a day.

Mean daily actual vapour pressure using dew point temperature

If daily dew point temperature is known, then daily actual vapour pressure can be estimated thus:
\[v_a = 0.6108 \exp \left[\frac{17.277 T_d}{T_d + 237.3} \right] \] \hspace{2cm} \text{(Allen et al., 1998, Equation 14)} \hspace{2cm} \text{(S2.8)}

where \(T_d \) is the dew point temperature (°C).

Psychrometric constant

\[\gamma = 0.00163 \frac{p}{\lambda} \] \hspace{2cm} \text{(Allen et al., 1998, Equation 8)} \hspace{2cm} \text{(S2.9)}

where \(\gamma \) is the psychrometric constant (kPa °C\(^{-1}\)), \(\lambda \) is the latent heat of vaporization = 2.45 MJ kg\(^{-1}\) (at 20°C), and \(p \) is atmospheric pressure at elevation \(z \) m.

Atmospheric pressure

\[p = 101.3 \left(\frac{293 - 0.0065 Elev}{293} \right)^{5.26} \] \hspace{2cm} \text{(Allen et al., 1998, Equation 7)} \hspace{2cm} \text{(S2.10)}

where \(p \) is the atmospheric pressure (kPa) at elevation \(Elev \) (m) above mean sea level.

Zero-plane displacement (displacement height)

Zero-plane displacement (\(z_d \)) (m) can be explained as the height within obstacles, e.g., trees, in which wind speed is zero. Values are listed in Table S2. Allen et al. (1998, Box 4) reported that for a natural crop-covered surface and Wieringa (1986, Table 1) noted for an average obstacle height:

\[z_d = \frac{2}{3} h \] \hspace{2cm} \text{(S2.11)}

where \(h \) is the mean height of the roughness obstacles (including vegetation) (m).

Roughness length (height)

Roughness length (\(z_o \)) (m) is related to the roughness of the evaporating surface and is the optimal parameter for defining terrain effects on wind (Wieringa, 1986, Table 1). Values are listed in Table S2. If values are not available for a particular terrain or surface, the following relationship can be used:

\[z_o \cong \left(\text{vegetation height} \right) \frac{1}{10} \] \hspace{2cm} \text{(S2.12)}

Units of evaporation

Evaporation rates are expressed as depth per unit time, e.g., mm day\(^{-1}\), or the rates can also be expressed as energy flux and, noting that the latent heat of water is 2.45 MJ kg\(^{-1}\), it follows that 1 mm day\(^{-1}\) of evaporation is equivalent to 2.45 MJ m\(^{-2}\) day\(^{-1}\).
Supplementary Material

Section S3 Estimating net solar radiation

This section outlines how net radiation is estimated with and without incoming solar radiation data. The method is based on the procedure outlined in Allen et al. (1998, pages 41 to 53).

\[R_n = R_{ns} - R_{nl} \]
(S3.1)

where \(R_n \) is the net radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(R_{ns} \) is the net incoming shortwave radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(R_{nl} \) is the net outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)).

Net shortwave solar radiation is estimated from the measured incoming solar radiation \(R_s \) at an Automatic Weather Station and albedo for the evaporating surface as:

\[R_{ns} = (1 - \alpha)R_s \]
(S3.2)

where \(R_s \) is the measured or estimated incoming solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(\alpha \) is the albedo of the evaporating surface. Several albedo values are listed in Table S3.

Except for eight sites in Australia (Roderick et al., 2009a, Section 2.3), measured values of net long wave radiation are not available. Hence, net outgoing longwave radiation is estimated by:

\[R_{nl} = \sigma \left(0.34 - 0.14\bar{v}_a^{0.5} \right) \left(\frac{(T_{\text{max}}+273.2)^4+(T_{\text{min}}+273.2)^4}{2} \right) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right) \]
(S3.3)

noting that \(\frac{R_s}{R_{so}} \leq 1 \), and where \(R_{nl} \) is the net outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(R_s \) is the measured or estimated incoming solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(R_{so} \) is the clear sky radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(\bar{v}_a \) is the mean actual daily vapour pressure (kPa), \(T_{\text{max}} \) and \(T_{\text{min}} \) are respectively the maximum and the minimum daily air temperature (°C), and \(\sigma \) is Stefan-Boltzmann constant (MJ K\(^{-4}\) m\(^{-2}\) day\(^{-1}\)).

\[R_{so} = (0.75 + 2 \times 10^{-5} \text{Elev})R_a \]
(S3.4)

where \(\text{Elev} \) is the ground elevation (m) above mean sea level of the automatic weather station (AWS), and \(R_a \) is the extraterrestrial radiation (MJ m\(^{-2}\) day\(^{-1}\)) which is the solar radiation on a horizontal surface at the top of the earth’s atmosphere and is computed by:

\[R_a = \frac{1440}{\pi} G_{sc} d_r^2 [\omega_s \sin(\text{lat}) \sin(\delta) + \cos(\text{lat}) \cos(\delta) \sin(\omega_s)] \]
(S3.5)

where \(G_{sc} \) is the solar constant = 0.0820 MJ m\(^{-2}\) min\(^{-1}\), \(d_r \) is the inverse relative distance Earth-Sun, \(\omega_s \) is the sunset hour angle (rad), \(\text{lat} \) is latitude (rad) (negative for southern hemisphere), and \(\delta \) is the solar declination (rad).

\[d_r^2 = 1 + 0.033 \cos\left(\frac{2\pi}{365} \text{DoY} \right) \]
(S3.6)

This equation and Equation (S3.5) are modified from the errata provided with Allen et al. (1998) for their Equation 23. The amended Equation (S3.6) is shown in McCullough and Porter (1971, Equation 2) and amended Equation (S3.5) is shown in McCullough (1968, Equation 3).

\[\delta = 0.409 \sin\left(\frac{2\pi}{365} \text{DoY} - 1.39 \right) \]
(S3.7)

where \(\text{DoY} \) is Day of Year (see below).
The sunset hour angle ω_s is estimated from:

$$\omega_s = \arccos(-\tan(lat) \tan(\delta))$$

(S3.8)

If measured values of R_s are not available, R_s can be calculated from the Ångström-Prescott equation (see Martinez-Lonano et al. (1984) and Ulgen and Hepbasli (2004) for historical developments and review of the equation) as follows:

$$R_s = \left(a_s + b_s \frac{n}{N} \right) R_a$$

(S3.9)

where n is the observed duration of sunshine hours, N is the maximum possible duration of daylight hours, and a_s and b_s are constants. a_s represents the fraction of extraterrestrial radiation reaching earth on sunless days ($n = 0$) and $a_s + b_s$ is the fraction of extraterrestrial radiation reaching earth on full-sun days ($n = N$). Where calibrated values of a_s and b_s are not available, values of $a_s = 0.25$ and $b_s = 0.5$ are preferred (Fleming et al, 1989, Equation 3; Allen et al., 1998, page 50). A literature review of more than 50 models revealed that many estimates of a_s and b_s, based on a monthly time-step have been developed (Menges et al., 2006; Yang et al, 2006; Roderick, 1999), although only five models are simple linear relationships as in Equation (S3.9). For these five models (Bahel et al., 1986; Benson et al., 1984; Louche et al., 1991; Page, 1961; Tiris et al., 1997 as reported in Menges et al., 2006), the average values of a_s and b_s are, respectively, 0.20 and 0.55. Roderick (1999, page 181) in estimating monthly average daily diffuse radiation for 25 sites in Australia and Antarctica commented that his results were consistent with $a_s = 0.23$ and $b_s = 0.50$ based on Linacre (1968) and Stiger (1980). More recently, McVicar et al. (2007, page 202) considered the study by Chen et al. (2004) and adopted $a_s = 0.195$ and $b_s = 0.5125$ for their analysis of the middle and lower catchments of the Yellow River. It is recommended, however, that if local calibrated values are available for the study area, these values should be used.

If the number of sunshine hours is unavailable, alternatively cloudiness (in terms of oktas – the number of eights of the sky covered by cloud) may have been measured. Chiew and McMahon (1991) developed the following empirical relationship relating oktas to sunshine hours:

$$n = a_o + b_o C_O + c_o C_O^2 + d_o C_O^3$$

(S3.10)

where n is the estimated sunshine hours, C_O is cloud cover in oktas, and a_o, \ldots, d_o are empirical constants and have been estimated for 26 climate stations across Australia. Values are provided in Chiew and McMahon (1991, Table A1). Errors in ground-based cloud cover estimates are discussed by Hoyt (1977).

The maximum daylight hours, N, is given by:

$$N = \frac{24}{\pi} \omega_s$$

(S3.11)

where ω_s is the sunset hour angle (rad).

If sunshine hours or cloudiness are not available for Australia, following Linacre (1993, Equation 20) cloudiness can be estimated from:

$$C_D = 1 + 0.5 \log P_j + (\log P_j)^2, P_j \geq 1$$

(S3.12)

$$C_D = 1, P_j < 1$$

(S3.13)

where P_j is the monthly precipitation (mm).
Thus, as an alternative to Equation (S3.9), \(R_s \) can be computed from (Linacre (1993, Equation 19):

\[
R_s = (0.85 - 0.047C_D)R_a
\]

where \(C_D \) is the number of tenths of the sky covered by cloud, \(R_a \) is the extraterrestrial radiation, and \(R_s \) is the estimate of the incoming solar radiation.

Estimating separately incoming and outgoing longwave radiation

In some procedures to estimate evaporation e.g., McJannet et al. (2008b) discussed in Section S5, outgoing longwave radiation needs to be computed separately from incoming longwave radiation rather than being combined as in Equation S3.3. In McJannet et al. (2008b) outgoing longwave radiation is estimated as a function of water surface temperature and separately as a function of wet-bulb temperature.

In Equation (S3.1), \(R_{ns} \) is estimated from Equations (S3.2), (S3.5), and (S3.9), and

\[
R_{nl} = R_{ol} - R_{il}
\]

where \(R_{ol} \) is the outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(R_{il} \) is the incoming longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)).

Following McJannet et al. (2008b, Equation 13) incoming long wave radiation may be estimated as follows:

\[
R_{il} = \left(C_f + (1 - C_f) \left(1 - (0.261\exp(-7.77 \times 10^{-4}T_a^2))\right)\right)\sigma(T_a + 273.15)^{4} \tag{S3.16}
\]

where \(R_{il} \) is the incoming longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(T_a \) is the mean daily air temperature (°C), \(\sigma \) is the Stefan-Boltzman constant (MJ K\(^{-4}\) m\(^{-2}\) day\(^{-1}\)), and \(C_f \) is the fraction of cloud cover estimated from (McJannet et al, 2008b, Equations 14 and 15):

\[
C_f = 1.1 - K_{ratio}, \quad K_{ratio} \leq 0.9 \tag{S3.17}
\]

\[
C_f = 2(1 - K_{ratio}), \quad K_{ratio} > 0.9 \tag{S3.18}
\]

where \(K_{ratio} = \frac{R_s}{R_{so}} \), \(R_{so} \) and \(R_s \) are estimated from Equations (S3.4) and (S3.9).

Outgoing longwave radiation is estimated as a function of water temperature and/or wet-bulb temperature as follows McJannet et al. (2010, Equations 22 and 29):

\[
R_{ol}^{wa} = 0.97\sigma(T_w + 273.15)^{4} \tag{S3.19}
\]

where \(R_{ol}^{wa} \) is the outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)) based on water temperature, and \(T_w \) is the water temperature (°C),

\[
R_{ol}^{wb} = \sigma(T_a + 273.15)^{4} + 4\sigma(T_a + 273.15)^{3}(T_{wb} - T_a) \tag{S3.20}
\]

where \(R_{ol}^{wb} \) is the outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)) based on wet-bulb temperature, and \(T_{wb} \) is the wet-bulb temperature (°C).

Estimating Day of Year (adapted from Allen et al., 1998, page 217)

The Day of Year (DoY) is computed for each day (D) of each month (M) as:

\[
\text{DoY} = \text{INTEGER}(275*M/9 - 30 + D) - 2 \tag{S3.21}
\]

IF (M < 3) THEN DoY = DoY + 2 \tag{S3.22}
IF(leap year and (M > 2)) THEN DoY = DoY + 1

Note that year 2000 is a leap year, whereas 1900 is not a leap year.
Section S4

Penman model

The Penman or combination equation (Penman, 1948, Equation 16) for estimating open-water evaporation is defined as:

\[
E_{PenOW} = \frac{\Delta}{\Delta + \gamma} \frac{R_{nw}}{\lambda} + \frac{\gamma}{\Delta + \gamma} E_a
\]
(S4.1)

where \(E_{PenOW}\) is the daily open-water evaporation (mm day\(^{-1}\)), \(R_{nw}\) is the net radiation at the water surface (MJ m\(^{-2}\) day\(^{-1}\)), \(E_a\) (mm day\(^{-1}\)) is a function of wind speed, saturation vapour pressure and average vapour pressure, \(\Delta\) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, \(\gamma\) is the psychrometric constant (kPa °C\(^{-1}\)), and \(\lambda\) is the latent heat of vaporization (MJ kg\(^{-1}\)). See Dingman (1992, Section 7.3.5) for a detailed discussion of Penman and evaporation issues in general.

In preparing this supplementary section, we were cognisant of de Bruin’s (1987) comment. “The result of the [recent] developments ... is that Penman's formula experienced a large number of changes in the last decades and that at this very moment tens of different versions of the formula exist. This causes a tremendous confusion.” Thus, in the following material we identified several keys features of the Penman equation for inclusion herein.

It is noted in Section 2.1.1 that Equation (S4.1) is based on simplifying assumptions to account for the fact that the temperature of the evaporating surface is unknown. References for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and Raupach (2001). Some commentary is provided at the end of this Section.

To estimate \(R_{nw}\), details are given in Section S3. In estimating \(R_{nw}\) an appropriate value of albedo (\(\alpha\)) should be used, which depends on the evaporating surface (Table S3); for open-water \(\alpha = 0.08\). Although Penman (1948, pages 132 and 137) used 6-day and monthly time-steps in his studies, several analysts have used a daily time-step.

To estimate \(E_a\) (mm day\(^{-1}\)) in Equation (S4.1), one should use:

\[
E_a = f(u)(v_a^* - v_a)
\]
(S4.2)

where \(f(u)\) is the wind function and \((v_a^* - v_a)\) is the vapour pressure deficit (kPa). In this paper, although there are several wind functions available (their application is discussed at the end of this section), we have adopted Penman’s (1956) equation as standard:

\[
f(u) = 1.313 + 1.381 u_2
\]
(S4.3)

where \(u_2\) is the average daily wind speed (m s\(^{-1}\)) at 2 m, and vapour pressure is measured in kPa. (In Australia, wind run is recorded at 9 am as the accumulated value over the previous 24 hours and, therefore, in Equation (S4.3) mean daily wind speed is based on the accumulated 24-hour value.)

Equations for estimating \(v_a^*, v_a\) and \(\Delta\) are set out in Section S2.

In the Penman equation, it is assumed there is no change in heat storage nor heat exchange with the ground, and no advected energy and, hence, the actual evaporation does not affect the overpassing air (Dingman, 1992, Section 7.3.5). Data required to apply the equation includes solar radiation (or sunshine hours or cloudiness), wind speed, air temperature and relative humidity, all averaged over the time-step adopted.

Adjustment for the height of the wind speed measurement in Penman equation
If wind measurements are not available at 2 m the following equation may be used to adjust u_z. This is important as the wind speed coefficients in Penman have been calibrated for wind speed at 2 m.

$$u_2 = u_z \frac{\ln \left(\frac{z}{z_0} \right)}{\ln \left(\frac{z_2}{z_0} \right)}$$

(S4.4)

where u_2 and u_z are respectively the wind speeds (m s$^{-1}$) at heights 2 m and z m, and z_0 is the roughness height.

Form of wind function

Over the years Penman and other authors have suggested several forms for the wind function. The form of the original Penman (1948) wind function (using wind speed u_2 in miles day$^{-1}$ and vapour pressure in mm of mercury) is:

$$f(u)_{48} = 0.35(1 + 9.8 \times 10^{-3}u_2)$$

(S4.5)

where $f(u)_{48}$ is the 1948 Penman wind function. Some authors (e.g., Szilagyi and Jozsa, 2008, page 173) have labelled this equation as the Rome wind function.

In 1956, Penman (1956) suggested that the original wind function should be reduced to accommodate both the Lake Hefner evaporation results and the original Rothamsted tank evaporation as follows:

$$f(u)_{56} = 0.35(0.5 + 9.8 \times 10^{-3}u_2)$$

(S4.6)

where $f(u)_{56}$ is the 1956 Penman wind function.

This equation in which u_2 is in miles per day and the saturation deficit is in units of mm of mercury is equivalent to Equation (S4.3) in which the average daily wind speed u_2 is in m s$^{-1}$ and the vapour pressure deficit is in units of kPa. Based on a study of several reservoirs in Australia and Botswana, Fleming et al. (1989, page 59) adopted this form of the wind function. Shuttleworth (1992, Section 4.4.4) observed that the Penman equation with the original wind function overestimated evaporation from large lakes by 10% to 20%. Linacre (1989, page 243 and Appendix 1) observed from the median of 26 studies he identified and his own analysis of the heat transfer coefficient of water, that the coefficient was in the range $2.3u$ to $2.6u$ W m$^{-2}$ K$^{-1}$ (and u in m s$^{-1}$), which implies that

$$f(u)_{LIN}$$

is between $0.31(9.8 \times 10^{-3}u_2)$ and $0.35(9.8 \times 10^{-3}u_2)$

(S4.7)

where $f(u)_{LIN}$ is the Linacre wind function, u_2 is in miles day$^{-1}$ and vapour pressure in mm of mercury for comparison with Equations S4.5 and S4.6.

Based on Brutsaert (1982), Valiantzas (2006, page 695) reported that the 1948 function is used more frequently than the 1956 function in hydrologic applications. However, Cohen et al. (2002, Section 4) reporting Stanhill (1963) noted the 1948 wind function to be unrealistically high. Using the FAO CLIMWAT global data (~5000 stations world-wide), Valiantzas (2006) compared the E_{Pen} values for the three wind functions and found that the following relationships held with an $R^2 = 0.991$:

$$E_{PenOW}|f(u)_{48} \approx 1.06E_{PenOW}|f(u)_{56} \approx 1.12E_{PenOW}|f(u)_{LIN}$$

(S4.8)

This result approximates our analysis which is based on applying the three wind functions to the 68 Australian stations (Table S4) as summarised below:

$$E_{PenOW}|f(u)_{48} \approx 1.11E_{PenOW}|f(u)_{56} \approx 1.19E_{PenOW}|f(u)_{LIN}$$

(S4.9)
Table S4 also shows a comparison with FAO-56 Reference Crop evapotranspiration and Priestley-Taylor evaporation as well as 10th and 90th percentile values. Valiantzas (2006, page 696) suggested the 1948 wind function be adopted as standard in the Penman equation, however, noting the comments above by Shuttleworth (1992, Section 4.4.4), Linacre (1993) and Cohen et al (2002), we have adopted the Penman (1956) form of the wind function in this paper. In terms of the units used (vapour pressure in kPa, and mean daily wind speed in m s\(^{-1}\)), the Penman 1956 wind function is:

\[
f(u) = 1.313 + 1.381 u^2 \quad \text{(S4.10)}
\]

For comparison, Penman’s 1948 wind function in the same units as Equation (S4.10) (vapour pressure in kPa, and wind speed in m s\(^{-1}\)) is:

\[
f(u) = 2.626 + 1.381 u^2 \quad \text{(S4.11)}
\]

Penman equation without wind data

Valiantzas (2006, Equation 33) proposed the following equation for situations where no wind data are available:

\[
E_{\text{PenOW}} \approx 0.047 R_s (T_a + 9.5)^{0.5} - 2.4 \left(\frac{R_s}{R_a} \right)^2 + 0.09 (T_a + 20) \left(1 - \frac{R_{\text{mean}}}{100} \right) \quad \text{(S4.12)}
\]

where \(E_{\text{PenOW}}\) is Penman’s open-water evaporation (mm day\(^{-1}\)), \(R_s\) is the measured or estimated incoming solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(T_a\) is the mean daily temperature (°C), \(R_a\) is the extraterrestrial solar radiation (MJ m\(^{-2}\) day\(^{-1}\)) and \(R_{\text{mean}}\) is the mean daily relative humidity (%). This assumes the albedo for water is 0.08 and the “0.09” in Equation (S4.12) applies to the Penman (1948) wind function. If one uses the Penman (1956) wind function, “0.09” should be replaced by “0.06”. Based on six years of daily data from California, Valiantzas (2006) compared Equation (S4.12) with Equation (S4.1) using monthly data and found the modified equation performed satisfactorily (\(R^2 = 0.983\), the long term ratio of “approximate” to “reference” evaporation was 0.995, and SEE = 0.25 mm day\(^{-1}\)) compared with the standard Penman equation.

Modifying Penman equation by including aerodynamic turbulence

According to Fennessey (2000), van Bavel (1966) modified the original Penman 1948 equation to take into account boundary layer resistance as follows:

\[
E'_{\text{PotOW}} = \frac{\Delta}{\Delta + \gamma} \frac{R_n - G}{\lambda} + \frac{\gamma}{\Delta + \gamma} \frac{\rho_a c_a (v_a^* - v_a)}{\lambda r_a} \quad \text{(S4.13)}
\]

where \(E'_{\text{PotOW}}\) is the modified Penman open water evaporation (mm day\(^{-1}\)) incorporating aerodynamic resistance, \(\rho_a\) is the mean air density at constant pressure (kg m\(^{-3}\)), \(c_a\) is the specific heat of the air (MJ kg\(^{-1}\) °C\(^{-1}\)), and \(r_a\) is an “aerodynamic or atmospheric resistance” to water vapour transport (s m\(^{-1}\)). Equation (S4.13) for open water is equivalent to the Penman-Monteith Equation (S5.1) with the surface resistance \(r_s\) set to zero.

To estimate aerodynamic resistance, McJannet et al. (2008a) introduced a specific wind function incorporating lake area into the Calder and Neal (1984) aerodynamic resistance equation as follows:

\[
r_a = \frac{86400 \rho_a c_a}{\gamma^2 \left(\frac{8}{5} \right)^{6.05} (3.80 + 1.57u_{10})} \quad \text{(S4.14)}
\]
where \(r_a \) is the aerodynamic resistance over a lake (s m\(^{-1}\)), \(A \) is the lake area (km\(^2\)), \(\rho_a \) is the mean air density at constant pressure (1.2 kg m\(^{-3}\)), \(c_a \) is the specific heat of the air (0.001013 MJ kg\(^{-1}\) °C\(^{-1}\)), \(\gamma \) is the psychrometric constant (0.0668 kPa °C\(^{-1}\) at mean sea-level pressure 101.3 kPa), \(u_{10} \) is the wind speed (m s\(^{-1}\)) at 10 m height, yielding \(r_a \) for a lake at sea-level as:

\[
r_a = \frac{410}{\left(\frac{5}{A} \right)^{0.05}(1+0.413u_{10})}
\] (S4.15)

It is noted here that \(r_a \) is a function of wind speed as well as lake area.

Chin (2011, Equation 12) offered an alternative equation to estimate \(r_a \) for wind speeds (\(u_2 \)) (m s\(^{-1}\)) measured at 2 m height and for no adjustment for lake area as follows:

\[
r_a = \frac{400}{(1+0.536u_2)}
\] (S4.16)

Price (1994) estimated \(r_a \) for Lake Ontario, Canada during a six-week summer period in 1991. Based on 2015 samples he determined a mean value of \(r_a = 201 \pm 122 \) s m\(^{-1}\). The wide range of observed values is a function of wind-speed.

Estimating \(\Delta \) under extreme conditions

McArthur (1992, page 306) explains the assumptions behind \(\Delta \) in the Penman equation (Equation (S4.1)). Equation (S4.17) provides the physically correct estimate of \(\Delta \), which requires knowledge of the evaporating surface temperature \(T_s \).

\[
\Delta = \frac{\left[v^* - v^*_{a} \right]}{T_s - T_a}
\] (S4.17)

However, because \(T_s \) is generally unknown, \(\Delta \) is approximated as the slope of the saturated vapour pressure curve at air temperature as follows:

\[
\Delta' = \frac{d v^*}{dT} \text{ evaluated at air temperature } (T_a)
\] (S4.18)

In most practical situations \(\Delta' \) is an acceptable approximation to \(\Delta \) when the surface and air temperatures are close (McArthur (1992, page 306)). Under extreme conditions, high aerodynamic resistance, high humidity and low temperature, the surface and air temperatures diverge and this approximation breaks down (Paw U (1992, page 299)) and can lead to underestimating evaporation by about 10% (Slatyer and McIlroy, 1961; Paw U and Gao, 1988). Milly (1991), McArthur (1992) and Paw U (1992) provide a discussion of alternate procedures to estimate evaporation under such conditions.
Supplementary Material

Section S5 Penman-Monteith and FAO-56 Reference Crop models

The Penman-Monteith model defined below is usually adopted to estimate potential evapotranspiration, \(E_{PM} \) (mm day\(^{-1}\)). The equation is based on Allen et al. (1998, Equation 3):

\[
E_{PM} = \frac{\lambda}{\Delta + \gamma(1 + \frac{\Delta}{r_a})}(R_n - G + \rho_a c_a (v_a^* - v_a) + \frac{\rho_a c_a (v_a^* - v_a)}{r_a})
\]

(S5.1)

where \(E_{PM} \) is the Penman-Monteith potential evapotranspiration (mm day\(^{-1}\)), \(R_n \) is the net radiation at the vegetated surface (MJ m\(^{-2}\) day\(^{-1}\)) incorporating an albedo value appropriate for the evaporating surface (Table S3), \(G \) is the soil heat flux (MJ m\(^{-2}\) day\(^{-1}\)), \(\rho_a \) is the mean air density at constant pressure (kg m\(^{-3}\)), \(c_a \) is the specific heat of the air (MJ kg\(^{-1}\) °C\(^{-1}\)), \(r_a \) is an “aerodynamic or atmospheric resistance” to water vapour transport, i.e., from the leaf surface to the atmosphere (s m\(^{-1}\)) (Dunin and Greenwood, 1986, page 48), \(r_s \) is a “surface resistance” term, that is the resistances from within the plant to the bulk leaf surfaces (s m\(^{-1}\)) (Dunin and Greenwood, 1986, page 48), \((v_a^* - v_a) \) is the vapour pressure deficit (kPa), \(\lambda \) is the latent heat of vaporization (MJ kg\(^{-1}\)), \(\Delta \) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, and \(\gamma \) is the psychrometric constant (kPa °C\(^{-1}\)). \(G \) is defined as (Allen et al., 1998, Equation 41):

\[
G = c_s d_s \left(\frac{T_i - T_{i-1}}{\Delta t}\right)
\]

(S5.2)

where \(c_s \) is the volumetric heat capacity of soil (MJ m\(^{-3}\) °C\(^{-1}\)) (for an average soil moisture \(c_s \approx 2.1 \), Grayson et al., 1996, page 33), \(d_s \) is the effective soil depth (m), \(T_i \) and \(T_{i-1} \) are the average air temperatures (°C) on day \(i \) and \(i-1 \) respectively, and \(\Delta t \) is time-step (day).

It is noted in Section 2.1.2 that Equation (S5.1) is based on simplifying assumptions to account for the fact that the temperature of the evaporating surface is unknown. References for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and Raupach (2001). An aspect of this issue is discussed in the previous section dealing with Equation (S4.14).

Generally, for daily time-steps \(G \) can be assumed to be negligible (Allen et al., 1998, page 68).

Values of aerodynamic resistance and surface (or canopy) resistance

\(r_a \), the aerodynamic resistance, controls the removal of water vapour from the plant surface under neutral stability conditions and is defined for an evaporating surface by Allen et al. (1998, Equation 4) as follows:

\[
r_a = \ln\left(\frac{z_m - d}{z_{om}}\right) \ln\left(\frac{z_h - d}{z_{oh}}\right)
\]

(S5.3)

where \(z_m \) is the height of the wind instrument (m), \(z_h \) is the height of the humidity measurements (m), \(d \) is the zero plane displacement height (m), \(z_{om} \) is the roughness length governing momentum transfer (m), \(z_{oh} \) is the roughness length governing transfer of heat and vapour (m), \(k \) is von Kármán’s constant (0.41), and \(u_x \) is the wind speed at height \(z_m \) (m s\(^{-1}\)).

According to Allen et al. (1998, page 21), for a wide range of crops, \(d \) and \(z_{om} \) can be estimated from the crop height (\(h \)) as:
\(d = 0.67h \), and \(z_{om} = 0.123h \) (S5.4)

and \(z_{oh} \) can be approximated from:

\[z_{oh} = 0.1z_{om} \] (S5.5)

Some typical values of \(r_a \) are listed in Table S2.

According to Chin (2011, Equation 12), Equation (S5.3) and the following Equation (S5.7), which is for water, are conventional practice for the PM equation.

\[r_a = \frac{4.72 \left(\frac{z_m}{z_o} \right)^2}{1 + 0.54u_z} \] (S5.7)

where \(z_m \) is the height of wind measurements and \(z_o \) (roughness length) is:

\[z_o = \frac{(vegetation \ height)}{10} \] (S5.8)

For water \(z_o = 0.001 \) m (Table S2).

\(r_s \), the surface resistance term, in vegetation represents bulk stomatal resistance or canopy resistance, which is a property of the plant type and its water stress level. This term controls the release of water to the plant or soil surface; some typical values of \(r_s \) are listed in Table S2. For water, \(r_s = 0 \).

According to Allen et al. (1998) \(r_s \) is a combination of several resistances in series including soil, total leaf area (canopy) and stomatal resistances. This is a complex subject and well beyond the scope of this paper. Readers are referred to Monteith (1965) and Shuttleworth and Gurney (1990).

Again following Allen et al. (1998, Equation 5), an alternative definition of \(r_s \) after Szeicz et al. (1969, Equation 9) is:

\[r_s = \frac{r_l}{LAI_{active}} \] (S5.9)

where \(r_l \) is the bulk stomatal resistance of a well-illuminated leaf (s m\(^{-1}\)), and \(LAI_{active} \) is the active (sunlit) leaf area index (m\(^2\) (of leaf area) m\(^{-2}\) (of soil surface)). It is further noted by Allen et al. (1998) that \(r_l \) is influenced by climate, water availability and vegetation type. They provide a simple example for a grass reference crop as follows:

\[LAI_{active} = 0.5LAI \], and (S5.10)

and a general equation for LAI of grass is:

\[LAI = 24h \] (S5.11)

where \(h \) is the crop height (m).

Given the stomatal resistance of a single leaf of grass is \(~100\) s m\(^{-1}\) and the crop height is 0.12 m (Allen et al., 1998, page 22), then \(r_s \) for a grass reference surface is:

\[r_s = \frac{100}{0.5 \times 24 \times 0.12} = 70 \text{ s m}^{-1} \] (S5.12)

Dingman (1992, page 296, footnote 9) notes that atmospheric conductance, \(C_{atm} \), is the inverse of aerodynamic resistance:

\[C_{atm} = \frac{1}{r_a} \] (S5.13)
Also, it is implied from Dingman (1992, page 299) that canopy conductance, C_{can}, is the inverse of surface resistance:

$$C_{can} = \frac{1}{r_s} \quad \text{(S5.14)}$$

Based on data collected in the Amazonian forest, Shuttleworth (1988) proposed that for a dry canopy the surface resistance can be described by the following quadratic function of time of day, with r_s falling to a minimum late morning and rising to a very large value at dusk as follows:

$$r_s = \frac{1000}{12.17 - 0.531(t_{\text{day}} - 12) - 0.223(t_{\text{day}} - 12)^2} \quad \text{(S5.15)}$$

where r_s is surface or canopy resistance (s m$^{-1}$) and t_{day} is local time of day in hours.

To understand the relative importance of radiation and atmospheric demand (through the vapour pressure deficit) in the transpiration process, Jarvis and McNaughton (1986, A16) introduced a decoupling coefficient, Ω, (Equation S5.16) which ranges between 0 and 1 and is a measure of the decoupling between the conditions at the surface of a leaf and in the surrounding air:

$$\Omega = \frac{\Delta \gamma + 1}{\Delta \gamma + 1 + \frac{r_s}{r_a}} \quad \text{(S5.16)}$$

Wallace and McJannet (2010, page 109) explain the significance of Ω as follows. When Ω is small there is a strong coupling between the canopy and the atmosphere and, consequently, canopy conductance, the vapour pressure deficit and wind speed strongly influence transpiration, whereas as Ω approached 1 (complete decoupling) radiation is the dominant factor affecting transpiration. This relationship is explained mathematically by Kumagai et al (2004, Equation 3) as follows:

$$ET_{PM} = \Omega E_{1st} + (1 - \Omega)E_{2nd} \quad \text{(S5.17)}$$

where E_{1st} is the radiation (first) term in the PM model (Equation S5.1) and E_{2nd} is aerodynamic (second) term.

FAO-56 Reference Crop Evapotranspiration

If we substitute for r_a and r_s in Equation (S5.1) using the relevant equations in Allen et al. (1998, Equations (3) and (4)) and adopting the properties of the FAO-56 hypothetical crop of assumed height of 0.12 m, a surface resistance of 70 s m$^{-1}$ and an albedo of 0.23, the substitutions yield the familiar FAO-56 Reference Crop evapotranspiration, ET_{RC}, equation (Allen et al., 1998, Equation 6):

$$ET_{RC} = \frac{0.408 \Delta (R_n - G) + 0.900 (v_u^2 - v_a^2)}{\Delta + 1.34u_2} \quad \text{= } ET_{RCsh} \quad \text{(S5.18)}$$

where ET_{RCsh} is the Reference Crop evapotranspiration for short grass (mm day$^{-1}$), u_2 is the average daily wind speed (m s$^{-1}$) at 2 m, and T_a is the mean daily air temperature (°C). Meyer (1999) discusses the application of the Penman-Monteith equation to inland south-eastern Australia.

ASCE-EWRI Standardized Penman-Monteith Equation
The ASCE-EWRI Standardized Penman-Monteith Equation (S5.19) (ASCE, 2005, Equation 1, Table 1) was developed to estimate potential evapotranspiration from a tall crop with the following characteristics: vegetation height 0.50 m, surface resistance 45 s m\(^{-1}\) and albedo of 0.23. The equivalent equation to Equation (S5.18) for tall grass is:

\[
ET_{RCTa} = \frac{0.408d(R_n - G) + γ \frac{1600}{R_n + 273} u_2(v_a^* - v_a)}{Δ + γ(1 + 0.38u_2)} \tag{S5.19}
\]

where \(ET_{RCTa}\) is the Reference Crop evapotranspiration for tall grass (mm day\(^{-1}\)).

Adjustment for height of wind speed measurement in Penman-Monteith and FAO-56 Reference Crop equations

The following equation is to adjust wind speed for instrument height associated with short grassed surfaces (Allen et al., 1998, Equation (47)):

\[
u_2 = u_z \frac{4.87}{\ln(67.8z - 5.42)} \tag{S5.20}
\]

where \(u_2\) and \(u_z\) are respectively the wind speeds at heights 2 m and \(z\) m.

Reference Crop equation without wind data

Valiantzas (2006, Equation 39) proposed the following equation (which is similar to the simplified Penman equation, see Equation (S 4.12)), to estimate monthly Reference Crop evapotranspiration for situations where no wind data are available:

\[
ET_{RC} \approx 0.038R_S (\bar{T} + 9.5)^{0.5} - 2.4 \left(\frac{R_S}{R_A}\right)^2 + 0.075(\bar{T} + 20) \left(1 - \frac{RH}{100}\right) \tag{S5.21}
\]

where \(ET_{RC}\) is the Reference Crop estimate of evapotranspiration for short grass (mm day\(^{-1}\)), \(R_S\) is the measured or estimated average monthly incoming solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(R_A\) is the average monthly extraterrestrial solar radiation (MJ m\(^{-2}\) day\(^{-1}\)) and \(RH\) is the mean monthly relative humidity (%). This procedure assumes the albedo = 0.25 (rather than the standard 0.23) for a crop. For 535 northern hemisphere climate stations, monthly estimates of \(E_{RC}\) based on Equation (S5.21) were compared with the standard reference crop Equation (S5.18). The approximate model performed very well on a sub-set of 4461 monthly estimates (R\(^2\) = 0.951), the long term ratio of “approximate” to “reference” was 1.03, and SEE = 0.34 mm day\(^{-1}\).

Application of Penman-Monteith to water bodies based on equilibrium temperature

An interesting application of the Penman-Monteith equation (Equation (S5.1)) to a range of water bodies (irrigation channels, ponds, lakes, reservoirs streams and floodplains) was carried out by McJannet et al. (2008b) who set \(r_s = 0\) for water bodies (Table S2). The approach is outlined in Section S11.

Shuttleworth-Wallace

To deal with sparse vegetation Shuttleworth and Wallace (1985, Equations 11 to 18) modified the PM model to separate evapotranspiration into soil evaporation and transpiration. Wessel and Rouse (1994) further modified the Shuttleworth-Wallace (SW) model to accommodate evaporation from water surfaces but recommended that this component be not included in the SW approach. The Shuttleworth and Wallace (1985) equations are:

\[
E_{SW} = \frac{1}{\lambda} (C_{ca} PM_{ca} + C_{su} PM_{su}) \tag{S5.22}
\]
where E_{SW} is the Shuttleworth-Wallace combined evaporation (mm day$^{-1}$) from the vegetation and the soil, PM_{ca} and PM_{su} are respectively the evaporation (mm day$^{-1}$) from a closed canopy and from bare substrate, A_e is the available energy (MJ m$^{-2}$ day$^{-1}$) defined as the above-canopy fluxes of sensible heat and latent heat, and A_{ss} is the energy (MJ m$^{-2}$ day$^{-1}$) available at the substrate, λ is the latent heat of vaporization (MJ kg$^{-1}$), Δ is the slope of the vapour pressure curve (kPa °C$^{-1}$), γ is the psychrometric constant (kPa °C$^{-1}$), c_a is the specific heat of the air (MJ kg$^{-1}$ °C$^{-1}$) at air temperature, $(v_a^* - v_a)$ is the vapour pressure deficit (kPa), r_a^a is the aerodynamic resistance between the canopy source height and the reference level (s m$^{-1}$), r_a^c is the bulk boundary layer resistance of the vegetative elements in the canopy level (s m$^{-1}$), r_a^s is the aerodynamic resistance between the substrate and canopy source height level (s m$^{-1}$), r_s^c is the bulk stomatal resistance of the canopy level (s m$^{-1}$), and r_s^s is the surface resistance of the substrate level (s m$^{-1}$). Wessel and Rouse (1994, Section 4.1) were unable to determine the soil surface resistance, r_s^s, and adopted a value of 500 s m$^{-1}$ for their hourly analysis.

It appears that Shuttleworth and Wallace (1985) did not prescribe the appropriate time-step that should be used in their model but Wessel and Rouse (1994) adopted both an hourly and daily time-step in their simulations. Readers interested in applying the SW model should refer to Stannard (1993) and Federer et al. (1996).

Weighted Penman-Monteith

In order to estimate the evaporation from a wetland, Wessel and Rouse (1994, Equation 14) proposed the following weighted Penman-Monteith approach:

$$E_{wetland} = LAI E_{can} + S E_{soil} + W E_{water}$$ \hspace{1cm} (S5.30)

where $E_{wetland}$ is the evapotranspiration (mm day$^{-1}$) from the wetland, E_{can} is the transpiration (mm day$^{-1}$) from the canopy, E_{soil} is the soil evaporation (mm day$^{-1}$), E_{water} is the evaporation (mm day$^{-1}$) from the standing water, LAI is the leaf area index, and S and W are respectively the proportion of total area of bare soil and open water. E_{can}, E_{soil} and E_{water} are the Penman-Monteith estimates of ET for the canopy, soil and water as specified by Drexler et al. (2004, Equations 17 to 19):
\[E_{\text{can}} = \frac{\Delta (R_{\text{can}} - G) + \rho_{\text{ca}} (v_2 - v_a)}{\Delta + \gamma (1 + \frac{r_c}{r_a})} \] \hspace{1cm} (S5.31)

\[E_{\text{soil}} = \frac{\Delta (R_{\text{soil}} - G) + \rho_{\text{ca}} (v_2 - v_a)}{\Delta + \gamma (1 + \frac{r_c}{r_a})} \] \hspace{1cm} (S5.32)

\[E_{\text{water}} = \frac{\Delta (R_{\text{water}} - G) + \rho_{\text{ca}} (v_2 - v_a)}{\Delta + \gamma} \] \hspace{1cm} (S5.33)

where \(E_{\text{can}} \), \(E_{\text{soil}} \), and \(E_{\text{water}} \) are respectively the evaporation (mm day\(^{-1}\)) from the canopy, soils and water, \(R_{\text{can}} \), \(R_{\text{soil}} \), and \(R_{\text{water}} \) are respectively the net solar radiation (MJ m\(^{-2}\) day\(^{-1}\)) to the canopy, soil and water, \(G \) is the heat flux transfer (MJ m\(^{-2}\) day\(^{-1}\)) to and from the soil and water, and other variables are defined above.

Matt-Shuttleworth

Shuttleworth and Wallace (2009, page 1904) recommend that the FAO-56 Reference Crop method (Allen et al., 1998) should not be applied to irrigation areas like those in Australia that are semi-arid and windy. They recommend that the Matt-Shuttleworth (M-S) model be adopted in place of the FAO-56 Reference Crop method. The M-S model consists of five steps (details are given in Shuttleworth and Wallace (2009, as Equations 5, 8, 9, and 10):

1. Select the surface resistance for the target crop (from Shuttleworth and Wallace (2009, Table 3). For example, for rye grass the surface resistance is 66 s m\(^{-1}\).
2. Calculate
 \[r_{clim} = 86400 \frac{\rho_a c_a (VPD)}{\Delta R_n} \] \hspace{1cm} (S5.34)
 where \(r_{clim} \) is termed the climatological resistance (s m\(^{-1}\)), \(\rho_a \) is the mean air density (kg m\(^{-3}\)) at constant pressure, \(c_a \) is the specific heat of the air (MJ kg\(^{-1}\) °C\(^{-1}\)), \(VPD \) is the vapour pressure deficit (kPa), \(\Delta \) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, and \(R_n \) is the net radiation (MJ m\(^{-2}\) day\(^{-1}\)) at the vegetated surface. The 86,400 constant converts the radiation energy from MJ m\(^{-2}\) day\(^{-1}\) to MJ m\(^{-2}\) sec\(^{-1}\).
3. Calculate
 \[\frac{VPD_{50}}{VPD_2} = \left(\frac{302(\Delta + \gamma) + 70y u_2}{208(\Delta + \gamma) + 70y u_2} \right) + \frac{1}{r_{clim}} \left[\frac{302(\Delta + \gamma) + 70y u_2}{208(\Delta + \gamma) + 70y u_2} \right] \left(\frac{208}{u_2} \right) - \left(\frac{302}{u_2} \right) \] \hspace{1cm} (S5.35)
 where \(VPD_{50} \) and \(VPD_2 \) are the vapour pressure deficits (kPa) at 50 m and 2 m height, and \(u_2 \) is the mean daily wind speed (m s\(^{-1}\)) at 2 m height.
4. Calculate
 \[r_c^{50} = \frac{1}{(0.41)^2} \ln \left[\frac{(50-0.67h)}{(0.123h)} \right] \ln \left[\frac{(50-0.67h)}{(0.0123h)} \right] \ln \left[\frac{12-0.08}{0.0148} \right] \ln \left[\frac{12-0.08}{0.0148} \right] \] \hspace{1cm} (S5.36)
 where \(r_c^{50} \) is the aerodynamic coefficient (s m\(^{-1}\)) for crop height (h)
5. Calculate
 \[E_T = \frac{\Delta R_n + \rho_a c_a u_2 (VPD_2)}{\Delta + \gamma (1 + \frac{r_c}{r_a})} \] \hspace{1cm} (S5.37)
where ET_c is the well-watered crop evapotranspiration in a semi-arid and windy location, λ is the latent heat of vaporization (MJ kg$^{-1}$), $(r_s)_c$ is the surface resistance (s m$^{-1}$) of a well-watered crop equivalent to the FAO crop coefficient (Shuttleworth and Wallace, 2009, Table 3), and other variables are defined previously.

At five locations in Australia, Shuttleworth and Wallace (2009) compared water requirements estimated by the Matt-Shuttleworth method with the requirements estimated by FAO-56 Reference Crop method (Allen et al., 1998, Chapter 4) for irrigated sugar cane, cotton and short pasture. The analysis showed that within a growing season the differences between the two procedures varied considerably. However, over an entire season the M-S evapotranspiration estimate was 3% to 15% higher for sugar cane, 6% higher for cotton and between 0.5% and 2.5% for pasture compared to the FAO-56 method (Shuttleworth and Wallace, 2009, Table 4 and page 1905).
Supplementary Material

Section S6 PenPan model

There have been several variations of the Penman equation to model the evaporation from a Class-A evaporation pan. Linacre (1994) developed a physical model which he called the Penpan formula or equation. Rotstayn et al. (2006) coupled the radiative component of Linacre (1994) and the aerodynamic component of Thom et al. (1981) to develop the PenPan model which is defined, using the symbols of Johnson and Sharma (2010), as follows:

\[
E_{\text{PenPan}} = \frac{\Delta}{\Delta + a_p \gamma} \frac{R_{\text{NPan}}}{\lambda} + \frac{a_p \gamma}{\Delta + a_p \gamma} f_{\text{Pan}}(u)(v_a^* - v_a)
\]

(S6.1)

where \(E_{\text{PenPan}}\) is the modelled Class-A (unscreened) pan evaporation (mm day\(^{-1}\)), \(R_{\text{NPan}}\) is the net radiation (MJ m\(^{-2}\) day\(^{-1}\)) at the pan, \(\Delta\) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, \(\gamma\) is the psychrometric constant (kPa °C\(^{-1}\)), and \(\lambda\) is the latent heat of vaporization (MJ kg\(^{-1}\)), \(a_p\) is a constant adopted as 2.4, \(v_a^* - v_a\) is the vapour pressure deficit (kPa), and \(f_{\text{Pan}}(u)\) is defined as (Thom et al., 1981, Equation 34):

\[
f_{\text{Pan}}(u) = 1.201 + 1.621 u_2
\]

(S6.2)

where \(u_2\) is the average daily wind speed at 2 m height (m s\(^{-1}\)).

To estimate \(R_{\text{NPan}}\), we refer to Rotstayn et al. (2006, Equations 4 and 5):

\[
R_{\text{NPan}} = (1 - \alpha_A)R_{\text{Span}} - R_{nl}
\]

(S6.3)

\[
R_{\text{Span}} = [f_{\text{dir}}P_{\text{rad}} + 1.42(1 - f_{\text{dir}}) + 0.42\alpha_{ss}]R_S
\]

(S6.4)

where \(R_{\text{Span}}\) is the total short wave radiation (MJ m\(^{-2}\) day\(^{-1}\)) received by the pan, \(R_{nl}\) is the net outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)) from the pan, \(R_S\) is the incoming solar radiation (shortwave) (MJ m\(^{-2}\) day\(^{-1}\)) at the surface, \(f_{\text{dir}}\) is the fraction of \(R_S\) that is direct, \(P_{\text{rad}}\) is a pan radiation factor, \(\alpha_A\) is the albedo for a Class-A pan given as 0.14 (Linacre, 1992) as reported by Rotstayn et al. (2006, page 2), and \(\alpha_{ss}\) is the albedo of the ground surface surrounding the evaporation pan (Table S3). To be consistent with Equation (S3.1) we have assumed the net outgoing longwave radiation \(R_{nl}\) as positive. As noted by Roderick et al. (2007, page 1), \(R_{\text{Span}} > R_S\) because of the interception of energy by the pan walls.

\[
f_{\text{dir}}\] and \(P_{\text{rad}}\) are defined as:

\[
f_{\text{dir}} = -0.11 + 1.31 \frac{R_S}{R_a}
\]

(S6.5)

\[
P_{\text{rad}} = 1.32 + 4 \times 10^{-4} \text{lat} + 8 \times 10^{-5} \text{lat}^2
\]

(S6.6)

where \(R_a\) is the extraterrestrial radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(\text{lat}\) is the absolute value of latitude in degrees.

The equations to estimate \(R_{nl}\) are set out in Section S3. The above analysis is carried out on a monthly time-step.

Application to Australian data

Using the PenPan model (with \(a_s = 0.23\) and \(b_s = 0.50\) as noted in Section S3), the mean monthly ratio of the PenPan evaporation, adjusted for the bird-screen, to the Class-A pan evaporation over the 68 stations (consisting of approximately 11840 ratios over all months) is 1.078. The monthly evaporation estimates are plotted in Figure S3. The performance of the PenPan model in estimating Class-A pan evaporation is satisfactory.
although the PenPan values are biased towards slightly higher values at lower evaporations. These results compare favourably with PenPan versus Class-A pan evaporation results of Rotstayn et al. (2006, Figure 4), Roderick et al. (2007, Figure 1) and Johnson and Sharma (2010, Figure 1) especially as we use the standard climate data available through the Bureau of Meteorology National Climate Centre and sunshine hours as the basis of estimating solar radiation.

An objective of this supplementary material was to develop for Australia mean monthly evaporation pan coefficients (relating open surface-water based on Penman to Class-A pan evaporation). Confidence in the monthly Penman estimates is based on the fact that the PenPan estimates, which utilise the same climatic data and a similar model structure as for the Penman model, were found to estimate the monthly pan evaporation very satisfactorily. In order to estimate Penman evaporation suitable for computing pan coefficients, we varied a_s and b_s values so that the overall monthly PenPan/Class-A pan ratio for the 68 stations was unity. We argue that the optimised values of $a_s = 0.05$ and $b_s = 0.65$ obtained in this way provided realistic monthly Penman values and, therefore, realistic pan coefficients. The mean monthly pan coefficients for the 68 Australian stations are listed in Table S6.
Supplementary Material

Section S7 Morton models

In 1985, Morton et al. (1985) published the program WREVAP which sets out operational aspects for computing estimates of areal evapotranspiration and lake evaporation. WREVAP contains three models CRAE (Complementary Relationship Areal Evapotranspiration) (Morton, 1983a), CRWE (Complementary Relationship Wet-Surface Evaporation) (Morton, 1983b) and CRLE (Complementary Relationship Lake Evaporation) (Morton, 1986). CRAE computes evapotranspiration for the land-based environment whereas CRWE deals with shallow lakes and CRLE considers deep lakes where water-borne heat input and energy storage are key issues. The three models are shown comparatively in Table 2 and are described in detail below.

In Morton’s procedure, measurements of solar radiation are not required but are estimated through sunshine duration. However, if solar radiation data are available they may be used. The climate variables necessary to compute Morton’s monthly evaporation are mean monthly maximum and minimum air temperature, dew point temperature (or monthly relative humidity), monthly sunshine duration and mean annual rainfall. For periods shorter than one month, Morton (1983a, page 28) imposed a limit on the shortest time-step for analysis and advocated a minimum of five days. However, for hydrological applications, Morton (1986, page 379) permits daily time-step analysis so long as the daily values are accumulated to a week or longer. But, it is important for lake analysis, described in CRLE below, that the time-step of analysis be one month (Morton (1986, page 379).

Morton (1986, page 378) notes that the CRLE model estimates are sensitive to radiation inputs (or sunshine hours) but insensitive to errors in air temperature and relative humidity inputs, whereas the CRAE model requires accurate air temperature and relative humidity from a representative location. For lakes, land-based meteorological data can be used (Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that data measured over water have only a “…relatively minor effect…” on the estimate of lake evaporation.

CRAE

The CRAE model consists of three components: potential evapotranspiration, wet-environment areal evapotranspiration and actual areal evapotranspiration. A discussion of each component follows.

Estimating potential evapotranspiration (\(ET_{Pot}^{Mo}\) in Figure 1)

Morton’s approach to estimating potential evapotranspiration for a catchment or a large vegetated surface is to solve the energy-balance and the vapour transfer equations respectively for potential evapotranspiration and the equilibrium temperature:

\[
ET_{Pot}^{Mo} = \frac{1}{\lambda} \left(R_n - [\gamma pf_v + 4\epsilon_s \sigma (T_e + 273)^3] (T_e - T_a) \right) \quad (S7.1)
\]

\[
ET_{Pot}^{Mo} = \frac{1}{\lambda} \left(f_v (v_e^* - v_H^*) \right) \quad (S7.2)
\]

where \(ET_{Pot}^{Mo}\) is Morton’s estimate of point potential evapotranspiration (mm day\(^{-1}\)), \(R_n\) is the net radiation (W m\(^{-2}\)) for soil-plant surfaces at air temperature, \(\gamma\) is the psychrometric constant (mbar °C\(^{-1}\)), \(p\) is the atmospheric pressure (mbar), \(f_v\) is a vapour transfer coefficient (W m\(^{-2}\) mbar\(^{-1}\)), \(\epsilon_s\) is the surface emissivity, \(\sigma\) is the Stefan-Boltzmann constant (W m\(^{-2}\) K\(^{-4}\)), \(T_e\) and \(T_a\) are the equilibrium and air temperatures (°C), \(v_e^*\) is the saturation vapour pressure...
(mbar) at T_e, v_D^* is the saturation vapour pressure (mbar) at dew point temperature, and λ is the latent heat of vaporisation (W day kg$^{-1}$). (Note, the units used in Morton’s procedures have been adopted here to ensure that the correct values of the empirical constants are included.)

$$f_v = \left(\frac{p_s}{p} \right)^{0.5} \frac{f_Z}{\xi}$$

(S7.3)

where p_s and p are the sea-level atmospheric pressure (mbar) and at-site atmospheric pressure (mbar) respectively, f_Z is a constant (W m$^{-2}$ mbar$^{-1}$), and ξ is a dimensionless stability factor estimated from:

$$\xi = \frac{1}{0.28 \left(1 + \frac{v_D^*}{v_a^*} \right) + \frac{1}{\gamma p \left(\frac{p_s}{p} \right)^{0.5} b_0 f_Z (v_a^* - v_D^*)}}$$

noting that $\xi \geq 1$ (S7.4)

where v_D^* is the saturation vapour pressure (mbar) at dew point temperature, v_a^* is the saturation vapour pressure (mbar) at air temperature, Δ is the slope of the saturation vapour pressure curve (mbar °C$^{-1}$) at air temperature, and $b_0 = 1.0$ for the CRAE model (Table 2).

We note here that f_v is independent of wind speed. Many procedures (Penman, FAO-56 Reference Crop, PenPan, Advection-Aridity) used for estimating evaporation require wind as an input variable. However, Morton (1983b, page 95) argued that using routinely observed wind speeds in estimating lake evaporation do not significantly reduce the error in evaporation estimates. Based on three arguments ((1) the vapour transfer coefficient increases with increases in both surface roughness and wind speed yet wind speed tends to be lower in rough areas than in smooth areas, (2) f_v increases with atmospheric instability and is more pronounced at low wind speeds than at high wind speeds, and (3) errors in wind measurements), he assumed that the vapour transfer coefficient is independent of wind speed (Morton 1983a, page 25).

Morton (1983a, Section 5.1) sets out the following procedure to find T_e by iteration, and then E_{Pot}^{MO} can be estimated from Equation (S7.1). Assume a trial value of T'_e, which yields Δ'_e and $\delta T'_e = T_e - T'_e$, hence $\delta v_e = \Delta'_e \delta T'_e$ and $v_{e'} = v_e^* + \delta v_e$. Equating Equations (S7.1) and (S7.2) and substituting gives:

$$\delta T_e = \frac{\frac{R_n}{f_v} + v_a^* - v_e^* + \lambda_e (T - T_e')}{(\Delta'_e + \lambda_e)}$$

(S7.5)

where $\lambda_e = \gamma p + \frac{4 \epsilon \sigma (T_e + 273)^3}{f_v}$

(S7.6)

and variables are defined previously.

Initially, T'_e is set equal to the air temperature and the iterative procedure continues until δT_e becomes <0.01°C. Further details of the procedure are not included here but a worked example is provided in Section S21.

Estimating wet-environment areal evapotranspiration (ET_{Wet} in Figure 1)

To estimate the wet-environment areal evapotranspiration, which is equivalent to the conventional definition of potential evapotranspiration, Morton added an empirically derived advection constant (b_1) to the Priestley-Taylor equation (Equation (6) with $G = 0$) as follows:
where ET_{Wet}^{Mo} is the wet-environment areal evapotranspiration (mm day$^{-1}$), R_{ne} is the net radiation (W m$^{-2}$) for the soil-plant surface at T_e (°C), Δ_e is the slope of the saturation vapour pressure curve (mbar °C$^{-1}$) at T_e (°C), b_1 and b_2 are empirical coefficients, and the other variables are as defined previously. Values of b_1 and b_2, which were derived by Morton (1983a, page 25) for representative regions, are set out in Table 2. R_{ne} is estimated as follows (Morton, 1983a, Equation C37):

$$R_{ne} = ET_{Pot}^{Mo} + \gamma p f_v (T_e - T_a)$$ \hspace{1cm} (S7.8)

In their analysis of Australian data, Wang et al. (2001) adopted after calibration $f_Z = 29.2$ Wm$^{-2}$ mbar$^{-1}$ (Equation (S7.3)) and b_1 and b_2 (Equation S7.7) equal to 13.4 Wm$^{-2}$ and 1.13 Wm$^{-2}$ instead of 28 Wm$^{-2}$ mbar$^{-1}$, 14 Wm$^{-2}$, and 1.2 Wm$^{-2}$ respectively (Table 2) to give an overall value of the Priestley-Taylor coefficient, α_{PT}, equal to 1.26 rather than Morton’s 1.32 value. Chiew and Leahy (2003, Section 2.3) argue that the recalibrated values better represent Australian data. Our analysis for Australia stations (to be reported in later document) confirms that the Wang et al. (2001) calibrated parameters yield more realistic results than those of Morton.

Estimating actual areal evapotranspiration (ET_{Act} in Figure 1)

To estimate Morton’s actual areal evapotranspiration (ET_{Act}^{Mo}) (mm day$^{-1}$), one uses the results from Equations (S7.1) and (S7.7) in the Complementary Relationship as follows:

$$ET_{Act}^{Mo} = 2ET_{Wet}^{Mo} - ET_{Pot}^{Mo}$$ \hspace{1cm} (S7.9)

Morton (1983a, page 29) argues that as the models are completely calibrated they are accurate world-wide.

Limitations of CRAE model

Morton (1983a, page 28) points out five limitations of the CRAE model:

1. The model requires accurate measurements of humidity data.
2. The model should not be used for intervals of three days or less, however, as Morton (1983a) notes, so long as the accumulated values for a week or longer are accurate then a daily time-step is acceptable. (For lake evaporation, a monthly time-step should be used (Morton et al., 1985)).
3. The CRAE model should not be used near sharp discontinuities, e.g., near the edge of an oasis.
4. The climatological station should be representative of the area of interest.
5. Because the CRAE model does not use knowledge about the soil-vegetation system, it should not be used to examine the impact of natural or man-made change in the system.

Documentation of CRAE model

Documentation of the detailed steps to apply the CRAE model is given in Morton (1983a), Appendix C, and will not be repeated here. Our Section S21 provides a worked example.

CRWE

In CRWE, the only difference to CRAE is that the radiation absorption and the vapour transfer characteristics reflect the water surface rather than a vegetated surface (Morton,
The CRWE model provides estimates of lake-size wet surface evaporation from routine climate data observed in the land environment. Furthermore, according to Morton (1986, page 371) monthly evaporation can be accumulated to provide reliable estimates of lake evaporation at the annual time-step for lakes up to approximately 30 m deep. To estimate the evaporation from a shallow lake, Equation (S7.7) is applied with coefficients b_1 and b_2 taking values given in Table 2.

CRLE

In the CRLE model, the computational procedure to estimate lake evaporation is the same as that used in CRWE except that the energy term is net energy available, which depends on solar and water inputs for the current and previous months. In estimating deep lake evaporation on a monthly time-step, where changes in sub-surface heat storage may be important, Morton (1986, page 376) adopts a classical lag and route procedure where the routing is a linear storage function. The 1986 method, which we adopt herein, is different to Morton’s (1983b, Section 3) method. In the 1983 method, storage routing is applied to estimates of the shallow lake evaporation, whereas in Morton’s (1986) procedure, the solar and water borne inputs are routed and then lake evaporation is estimated. Using Morton’s symbols we summarise the four-step procedure of Morton (1986) as follows. Firstly, estimates of the solar and water borne heat input are computed:

$$G_W^0 = (1 - \alpha)R_s - R_{nl} + \delta h$$ \hspace{1cm} \text{(S7.10)}

where G_W^0 is the solar and waterborne heat input (W m$^{-2}$), R_s is the incident global radiation (W m$^{-2}$), R_{nl} is the net outgoing longwave radiation (W m$^{-2}$), α is albedo for water, $(1 - \alpha R_s)$ is the net incoming shortwave radiation (W m$^{-2}$), and δh, which is usually small, is the difference between heat content of inflows and outflows from the lake (W m$^{-2}$). However, δh may be important for small lakes that receive cooling water with elevated temperatures, e.g., from a thermal power station or for a small deep lake with seasonal heat input from a large river (Morton, 1986, page 376). Note that Equation (S7.10) is different to Morton (1986, Equation 2) in that he appears not to have included net longwave radiation at this point in the analysis.

Secondly, the delayed energy input is computed from:

$$G_W^t = G_W^{[t_L]} + (t_L - [t_L]) \left(G_W^{[t_L+1]} - G_W^{[t_L]} \right)$$ \hspace{1cm} \text{(S7.11)}

where $[t_L]$ and $(t_L - [t_L])$ are the integral and fractional components of the lake lag or delay time, t_L, (months), $G_W^{[t_L]}$ and $G_W^{[t_L+1]}$ are respectively the value (W m$^{-2}$) of G_W^0 computed for $[t_L]$ and for $[t_L + 1]$ months previously.

The third step uses a linear routing procedure to route on a monthly time-step the available input energy, G_W^t, through the storage as follows:

$$G_{LE} = G_{LB} + \frac{G_W^t - G_{LB}}{0.5 + S_c}$$ \hspace{1cm} \text{(S7.12)}

$$G_L = 0.5(G_{LE} + G_{LB})$$ \hspace{1cm} \text{(S7.13)}

where G_L is the monthly lake energy input (W m$^{-2}$), G_{LB} and G_{LE} are the available solar and waterborne heat energy (W m$^{-2}$) at the beginning and end of the month respectively, and S_c is the storage coefficient or routing constant (months).

To compute S_c and t_L, the average lake depth and the lake salinity are taken into account as follows:
\[S_c = \sqrt{\frac{t_0}{1 + \left(\frac{\tilde{h}}{97}\right)^2}} \]

(S7.14)

\[t_0 = 0.96 + 0.013\tilde{h} \text{ with } 0.039\tilde{h} \leq t_0 \leq 0.13\tilde{h} \]

(S7.15)

\[t_L = \frac{t_0}{\left(1 + \frac{s}{27000}\right)^2} \text{ with } t \leq 6.0 \]

(S7.16)

where \(t_0 \) is the soft water delay time (months), \(\tilde{h} \) is the average depth of the lake (m), and \(s \) is the lake salinity (ppm) (1 ppm \(\sim \) 1.56 microS cm\(^{-1}\) or EC units).

The final step is to input monthly values of \(G_L \) as \(R_n \) into Equation S7.1 to estimate deep lake monthly evaporation.

Typically, reservoir evaporation exceeds the evapotranspiration that would have occurred from the inundated area in the natural state. This net evaporation can be estimated as the difference between lake evaporation and actual areal evapotranspiration (Morton, 1986, item 4, page 386).

In Morton’s procedure, solar radiation measurements are not required as these are estimated from the other observed climate variables in the model. Chiew and Jayasuriya (1990) and Szilagyi (2001, page 198) indicate that estimates of daily global and net radiation by the Morton (1983a, Appendix C.1.2) procedure are accurate. Some researchers, e.g., Wang et al. (2001) and Szilagyi and Jozsa (2008) have used observed solar radiation data instead of Morton’s empirical estimate of \(R_T \), which is equivalent to \(R_S \) in this paper.

A listing of a Fortran 90 version of Program WREVAP, which follows closely Morton (1983a, Appendix C) and the routing scheme described in Morton (1986), is provided in Section S20.

Australian application of the complementary relationship

Wang et al. (2001) used Morton’s (1983a) model to produce a series of maps for Australia showing mean monthly areal potential evapotranspiration, point potential evapotranspiration and areal actual evapotranspiration; these terms were adopted by Wang et al (2001). The maps, which are at 0.1° (~10 km) grid resolution, are available at http://www.bom.gov.au/climate/averages and as a hard-copy in Wang et al. (2001). The detailed methodology is described in Chiew et al. (2002). Wang et al. (2001) provides the following guidelines for the application of the maps noting that they should not be used in estimating open water evaporation:

- **Areal potential evapotranspiration** (equivalent to Morton’s wet environment areal evapotranspiration \(ET_{Wet}^{Mo} \))
 - Large area with unlimited water supply
 - “Areal” > 1 km\(^2\)
 - Upper limit to actual evapotranspiration in rainfall-runoff modelling studies
 - Evapotranspiration from a large irrigation area with no shortage of water

- **Point potential evapotranspiration** (equivalent to Morton’s potential evapotranspiration \(ET_{Pot}^{Mo} \))
 - ET from a point with unlimited water supply
 - A small irrigation area surrounded by unirrigated area
 - Approximate preliminary estimate of evaporation from farm dams and shallow water storages
Based on 55 locations across Australia Chiew and Leahy (2003) found that ET_{pot} could be used as a substitute for Class-A pan evaporation.

Following an extensive analysis of potential evaporation formulations across Australia, Donohue et al. (2010b, page 192) have provided two of the Morton evaporation estimates namely areal potential evapotranspiration and point potential evapotranspiration as daily time-step grids. However, they concluded that the Morton point potential method is unable to reproduce evaporation dynamics observed across Australia and is unsuitable for general use. However, R. Donohue (pers. comm.) advised that “the reason Morton point potential values were so high in Donohue et al. (2010b) was because, in their modelling of net radiation, they explicitly accounted for actual land-cover dynamics. This procedure differs from Morton’s (1983) methodology, developed over 25 years ago, when remotely sensed data were not routinely available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983) methodology.”
Supplementary Material

Section S8 Advection-Aridity and like models

Advection-aridity model

Based on the Complementary Relationship, Brutsaert and Stricker (1979, page 445) proposed the Advection-Aridity (AA) model to estimate actual evapotranspiration ($ET_{Ac\text{t}}$) in which they adopted the Penman equation for potential evapotranspiration (ET_{Pot}) and the Priestley-Taylor equation for the wet-environment (ET_{Wet}). The Complementary Relationship is:

$$ET_{Ac\text{t}} = 2ET_{Wet} - ET_{Pot}$$

(S8.1)

and substituting for the Penman (Equation (4)) and Priestley-Taylor (Equation (6)) and rearranging yields:

$$ET_{Ac\text{t}}^{BS} = (2\alpha_{PT} - 1) \frac{\Delta R_n}{\Delta + \gamma} - \frac{\gamma}{\Delta + \gamma} f(u_2)(v_a^* - v_a)$$

(S8.2)

where $ET_{Ac\text{t}}^{BS}$ is the actual areal evapotranspiration (mm day$^{-1}$) based on Brutsaert and Stricker (1979), R_n is the net radiation (MJ m$^{-2}$ day$^{-1}$) at the evaporating vegetative surface, α_{PT} is the Priestley-Taylor parameter, u_2 is the average daily wind speed in m s$^{-1}$, v_a^* and v_a are respectively the saturation vapour pressure and the vapour pressure of the overpassing air (kPa) at air temperature, Δ is the slope of the saturation vapour pressure curve at air temperature (kPa °C$^{-1}$), γ is the psychrometric constant (kPa °C$^{-1}$) and λ is the latent heat of vaporization (MJ kg$^{-1}$).

Based on an energy budget for a rural catchment in Holland, Brutsaert and Stricker (1979, page 445) adopted a Priestley and Taylor (1972) constant α_{PT} of 1.28 rather than 1.26 (see Section 2.1.3) and Penman’s (1948) wind function $f(u_2)$ as:

$$f(u_2) = 2.626 + 1.381u_2$$

(S8.3)

which, according to Brutsaert and Stricker (1979, page 445), is equivalent to a surface of moderate roughness. In the comparison, R_n was measured by a net radiometer and surface albedo did not need to be assessed. If measured values of R_n are not available the adopted value of albedo should be appropriate for the surface conditions (see Table S3).

Brutsaert and Stricker (1979, Figures 1 to 4) tested their model at a daily time-step and observed that integrating the daily ET estimates over three days achieved better agreement with energy budget estimates than single day estimates. Equation (S8.2) sometimes generates negative ET values at the daily time-step.

Hobbins et al. (2001a) applied the AA model of Brutsaert and Stricker (1979) and the CRAE model of Morton (1983a) to 120 minimally impacted U.S. catchments and found the AA model underestimated annual actual evapotranspiration by 10.6% of mean annual precipitation; the CRAE model overestimated annual evapotranspiration by only 2.5% of precipitation (Hobbins et al., 2001a, Abstract). Hobbins et al. (2001b) recalibrated the AA model for a larger data set (139 minimally impacted basins) and adopted monthly regional wind functions, $f(u_2)$. Using $\alpha_{PT} = 1.3177$ they achieved a more satisfactory result than the original AA model. Another application of the AA model and the Zhang et al. (2001) model is by Brown et al. (2008, Table 1) who examined the spatial distribution of water supply in the United States. Across the U.S., the AA model overestimated the US Geological Survey gauged data by 4% and the Zhang model underestimated the gauged data by 5%.
Monteith (1981, page 24) offers the following comment regarding the Brutsaert and Stricker equation. “The scheme … has the merit of elegance and simplicity but its foundations need strengthening. Apart from the uncertainty which surrounds the value of α and its physical significance, Bouchet’s hypothesis of complementarity between actual and potential rates of evaporation needs to be substantiated by an appropriate model of the planetary boundary layer.”

Granger-Gray model

To estimate actual evapotranspiration from non-saturated lands, Granger and Gray (1989) developed a modified form of the Penman (1948) equation as follows:

\[
ET_{\text{Act}}^{GG} = \frac{\Delta G_g}{\Delta G_g + \gamma} \frac{R_n - G}{\lambda} + \frac{\gamma G_g}{\Delta G_g + \gamma} E_a
\]
(S8.4)

where \(ET_{\text{Act}}^{GG} \) is the actual evapotranspiration (mm day\(^{-1}\)) based on Granger and Gray (1989), \(R_n \) is the net radiation (MJ m\(^{-2}\) day\(^{-1}\)) near the evaporating surface (hence the albedo adopted is for the evaporating surface), \(G \) is the heat flux into the soil (MJ m\(^{-2}\) day\(^{-1}\)), \(\lambda \) is the latent heat of vaporization (MJ kg\(^{-1}\)), \(\Delta \) is the slope of the saturation vapour pressure curve at air temperature (kPa °C\(^{-1}\)), and \(\gamma \) is the psychrometric constant (kPa °C\(^{-1}\)), \(E_a \) is the drying power of the air (Equation S4.2), and \(G_g \) is a dimensionless evaporation parameter, which is based on several surface types, and is defined as (Granger, 1998, Equations 6 and 7):

\[
G_g = \frac{1}{0.793 + 0.20e^{4.902D_p} + 0.006D_p}
\]
(S8.5)

where \(D_p \), a dimensionless relative drying power, is defined as:

\[
D_p = \frac{E_a}{E_a + R_n - G}
\]
(S8.6)

where \(G \) is set to zero.

Adopting a daily time-step, Xu and Chen (2005, page 3725) compared, inter alia, Granger-Gray (GG) model with 12 years of daily lysimeter observations located at Mönchengladbach-Rheindahlen meteorological station in Germany and found the GG model performed better than the Brutsaert and Stricker Advection-Aridity model and the Morton CRAE model (Xu and Chen (2005, Abstract).

Szilagyi-Jozsa model

Based on theoretical considerations, Szilagyi (2007) offered an alternative modification of the AA model which was further amended by Szilagyi and Jozsa (2008, Equation (9)) to the following:

\[
ET_{\text{Act}}^{SJ} = 2E_{PT}(T_e) - E_{Pen}
\]
(S8.7)

where \(ET_{\text{Act}}^{SJ} \) is actual evapotranspiration (mm day\(^{-1}\)), \(E_{PT}(T_e) \) is wet-environment evaporation (mm day\(^{-1}\)) estimated by Priestley-Taylor at \(T_e \) (°C), \(E_{Pen} \) is potential evapotranspiration (mm day\(^{-1}\)) estimated by Penman using the 1948 wind function.

To evaluate \(T_e \), Szilagyi and Jozsa (2008) considered the Bowen Ratio (Bowen, 1926) for a small lake or sunken pan and found the equilibrium surface temperature, \(T_e \), could be estimated iteratively on a daily basis from (Szilagyi and Jozsa, 2008, Equation (8)):

\[
\frac{R_n}{\lambda E_{Pen}} = 1 + \frac{y(T_e - T_a)}{v_e - v_a}
\]
(S8.8)
where R_n is the available energy (MJ m$^{-2}$ day$^{-1}$), E_{Pen} is the Penman evaporation (mm day$^{-1}$) based on T_a, and T_e and T_a are respectively the equilibrium and air temperatures ($^\circ$C), v_e^* is the saturation vapour pressure (kPa) at T_e, v_a is the actual vapour pressure (kPa) at T_a, λ is the latent heat of vaporization (MJ kg$^{-1}$), and γ is the psychrometric constant (kPa °C$^{-1}$).

Based on daily data and adopting $\alpha_{PT} = 1.31$ but applying the Complementary Relationship to obtain monthly ET_{Act}^{SJ} values, Szilagyi and Jozsa (2008) tested Equation (S8.7) against actual evaporation estimated by Morton’s WREVAP model for 210 SAMSON (Solar and Meteorological Surface Observation Network) stations in the United States and found excellent agreement ($R^2 = 0.95$) (Szilagyi and Jozsa, 2008, Figure 6). Szilagyi et al (2009, page 574) applied their modified AA model to 25 watersheds, 194 SAMSON sites and 53 semi-arid SAMSON sites and concluded that their modified AA model performed better than the Brutsaert and Stricker (1979) traditional AA model.

In applying Equation (S8.7), a daily time-step is used and an albedo value for the vegetative surface is adopted. We note that when we applied Equation (S8.7) to days of very low net radiation, negative values of evaporation were occasionally estimated, a feature also observed in the Brutsaert and Stricker (1979, page 448) Aridity-Advection model (see Section S18).
Supplementary Material

Section S9 Additional evaporation equations

Although the following empirical equations (except the energy based procedure described at the end of this section) have been extensively referenced or widely used in past practice and therefore are included in this paper, we are of the view that the more physically-based equations described earlier are generally more appropriate for estimating evaporation or evapotranspiration. This is particularly so in regions where empirical coefficients have not been derived.

Dalton-type equations

Mass-transfer equations of the following form were first described by John Dalton in 1802 and are known as Dalton-type equations (Dingman, 1992, Section 7.3.2):

\[E = C_{emp} f(u)(v_s^* - v_a) \]

(S9.1)

where \(E \) is the actual surface evaporation (mm day\(^{-1}\)), \(f(u) \) is an appropriate wind function, \(v_s^* \) is the saturation vapour pressure (kPa) at the evaporating surface, \(v_a \) is the atmospheric vapour pressure (kPa), and \(C_{emp} \) is an empirical constant. McJannet et al. (2012) reviewed 19 studies for estimating open water evaporation and proposed a wind function (Equation 14) that depends on the area of the evaporating surface (see Section 2.4.2).

Thornthwaite (1948)

In the Thornthwaite evaporation method, the only meteorological data required to compute mean monthly potential evapotranspiration is mean monthly air temperature, the original steps in Thornthwaite’s (1948) procedure involved a nomogram and tables, which can be represented by the follow equations (Xu and Singh, 2001, Equations 4a and 4b):

\[\bar{E}_{Th,j} = 16 \left(\frac{hr_{day}}{12} \right) \left(\frac{daymon}{30} \right) \left(\frac{10^{-f}}{l} \right)^{a_{Th}} \]

(S9.2)

where \(\bar{E}_{Th,j} \) is the Thornthwaite 1948 estimate of mean monthly potential evapotranspiration (mm month\(^{-1}\)) for month \(j \), \((j = 1 \text{ to } 12) \), \(hr_{day} \) is the mean daily daylight hours in month \(j \), \(daymon \) is the number of days in month \(j \), \(\bar{T}_T \) is the mean monthly air temperature (°C) in month \(j \), and \(I \) is the annual heat index. The annual heat index is estimated as the sum of the monthly indices:

\[I = \sum_{j=1}^{12} i_j \]

(S9.3)

where \(i = \left(\frac{T_T}{5} \right)^{1.514} \)

(S9.4)

and \(a_{Th} = 6.75 \times 10^{-7}i^3 - 7.71 \times 10^{-5}i^2 + 0.01792i + 0.49239 \)

(S9.5)

It is noted that strict application of Thornthwaite (1948) yields only 12 values of potential evapotranspiration, a mean value for each calendar month. However, in several studies, Thornthwaite’s procedure has been modified to allow a time series of daily (Federer et al., 1996; Donohue et al., 2010b) or monthly (Xu and Singh, 2001; Lu et al., 2005; Amatya et al., 1995; Xu and Chen, 2005; Trajkovic and Kolakovic, 2009) potential evaporation values to be computed.

Building on Thornthwaite’s (1948) water balance procedure used in his climate classification analysis, Thornthwaite and Mather (1957) developed a procedure for computing a water balance. We suggest readers planning to use the Thornthwaite-Mather method pay
attention to Black’s (2007) paper in which he notes that there are significant differences between a 1955 version of the methodology and the 1957 version which, according to Black (2007), is the correct procedure. The Thornthwaite and Mather (1957) methodology consists of applying the 1948 procedure in a water balance context. Scozzafava and Tallini (2001) provide an example.

Makkink model

G.F. Makkink, as reported by de Bruin (1981), simplified the Penman (1948) equation by disregarding the aerodynamic term but compensated the evaporation estimate by introducing two empirical coefficients as follows (Jacobs and de Bruin, 1998, Equation 2):

\[
E_{Mak} = \frac{c_1 \left(\frac{\Delta}{\Delta + \gamma} \frac{R_s}{2.45} \right)}{c_2} \quad (S9.6)
\]

where \(E_{Mak}\) is the Makkink potential evaporation (mm day\(^{-1}\)), \(R_s\) is the solar radiation (incoming shortwave) (MJ m\(^{-2}\) day\(^{-1}\)) at the water surface, \(\Delta\) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, and \(\gamma\) is the psychrometric constant (kPa °C\(^{-1}\)). Adopted values of \(c_1\) and \(c_2\) are 0.61 and 0.12 (mm day\(^{-1}\)) (Winter et al., 1995; Xu and Singh, 2002; Rosenberry et al., 2007; Alexandris et al., 2008). According to Rosenberry et al. (2004, Table 1), a monthly time-step is used in the Makkink computations.

There have been a number of modifications made to the original Blaney (1959) equation for estimating the consumptive use or reference crop evapotranspiration. We outline here the Reference Crop FAO-24 (Allen and Pruitt, 1986; Jensen et al, 1990) version of Blaney and Criddle which is for a grass-related crop evapotranspiration. The method is based on several empirical coefficients which were developed from data measured at adequately watered, agricultural lysimeter sites (Allen and Pruitt, 1986), located in the dry western United States where advection effects were strong (Yin and Brook, 1992).

The FAO-24 Reference Crop version of Blaney-Criddle is defined as (Allen and Pruitt, 1986, Equations 1, 2 and 3; Shuttleworth, 1992, Equation 4.2.45):

\[
ET_{BC} = \left(0.0043 RH_{min} - \frac{n}{N} - 1.41 \right) + b_{var} p_y (0.46 T_a + 8.13) \quad (S9.7)
\]

\[
b_{var} = e_0 + e_1 RH_{min} + e_2 \frac{n}{N} + e_3 u_2 + e_4 RH_{min} \frac{n}{N} + e_5 RH_{min} u_2 \quad (S9.8)
\]

where \(ET_{BC}\) is the Blaney-Criddle Reference Crop evapotranspiration (mm day\(^{-1}\)), \(RH_{min}\) is the minimum relative daily humidity (%), \(n/N\) is the measured sunshine hours divided by the possible daily sunshine hours, \(p_y\) is the percentage of actual daytime hours for the day compared to the day-light hours for the entire year, \(T_a\) is the average daily air temperature (°C), and \(u_2\) is average daily wind speed (m s\(^{-1}\)) at 2 m. The recommended values of the coefficients are from Frevert et al. (1983, Table 1) as follows: \(e_0 = 0.81917\), \(e_1 = -0.0040922\), \(e_2 = 1.0705\), \(e_3 = 0.065649\), \(e_4 = -0.0059684\), \(e_5 = -0.0005967\). Due to lower minimum daily temperatures at higher elevation (McVicar et al., 2007 Figure 3), Allen and Pruitt (1986) incorporate an adjustment for elevation to the FAO-24 Blaney-Criddle equation for arid and semi-arid regions following Allen and Brockway (1983) as follows:

\[
ET_{BC}^H = ET_{BC} \left[1 + 0.1 \frac{Elev}{1000} \right] \quad (S9.9)
\]
where \(ET_{BC}^H \) is the Blaney-Criddle Reference Crop evapotranspiration adjusted for site elevation and \(Elev \) is the elevation of the site above mean sea level (m).

Doorenbos and Pruitt (1992, page 4) note that the BC procedure should be used “with scepticism” in equatorial regions (where air temperatures are “relatively constant”), for small islands and coastal areas (where air temperature is affected by sea temperature), for high elevations (due to environmental lapse rate induced low mean daily air temperature) and in monsoonal and mid–latitude regions (with a wide variety of sunshine hours).

It is noted that the original Blaney-Criddle procedure incorporates only monthly temperature data. Consequently, the coefficients \(e_0, \ldots, e_5 \) and the climate variables \(RH_{min}, T_a, u_2 \) in Equations (S9.7) and (S9.8), which were based on the crop consumptive use in western United States using the original BC model, will not represent potential evaporation in regions with climates differing from those in western United States. This may explain the Doorenbos and Pruitt (1992) comment in the previous paragraph.

Although the BC method has been used at both a daily and a monthly time-step (Allen and Pruitt, 1986), a monthly period is recommended (Doorenbos and Pruitt, 1992, page 4; Nandagiri and Kovoor, 2006, page 240).

Turc (1961)

The Turc method (Turc 1961) is one of the simplest empirical equations used to estimate reference crop evapotranspiration under humid conditions. (Note that the Turc (1961) equations are very different to those proposed in Turc (1954, 1955).) The Turc 1961 equation, based on daily data, is quoted by Trajković and Stojnić (2007, Equation 1) as:

\[
ET_{Turc} = 0.013(23.88R_s + 50)\frac{T_a}{T_a+15}
\]
(S9.10)

where \(ET_{Turc} \) is the reference crop evapotranspiration (mm day\(^{-1}\)), \(T_a \) is the average air temperature (°C), and \(R_s \) is the incoming solar radiation (MJ m\(^{-2}\) day\(^{-1}\)).

For non-humid conditions (RH < 50%), the adjustment provided by Alexandris et al. (2008, Equation 5b) may be used.

\[
ET_{Turc} = 0.013(23.88R_s + 50)\left(\frac{T_a}{T_a+15}\right)\left(1 + \frac{50-RH}{70}\right)
\]
(S9.11)

where \(RH \) is the relative humidity (%).

Because Jensen et al. (1990) identified that the Turc (1961) method performs satisfactorily in humid regions (see Table 5), Trajković and Kolaković (2009) developed an empirical factor to adjust \(ET_{Turc} \) for wind speed. Details are given in Trajković and Kolaković (2009).

Hargreaves-Samani (Hargreaves and Samani, 1985)

The Hargreaves-Samani equation (Hargreaves and Samani, 1985, Equations 1 and 2), which estimates reference crop evapotranspiration, is as follows:

\[
ET_{HS} = 0.0135C_{HS}\frac{R_a}{\lambda}(T_{max} - T_{min})^{0.5}(T_a + 17.8)
\]
(S9.12)

where \(ET_{HS} \) is the reference crop evapotranspiration (mm day\(^{-1}\)), \(C_{HS} \) is an empirical coefficient, \(R_a \) is the extraterrestrial radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(T_{max}, T_{min}, T_a \) are respectively the maximum, minimum and average daily air temperature (°C). Samani (2000, Equation 3) proposed a modification to the empirical coefficient to reduce the error associated with the estimation of solar radiation as follows:
\[C_{HS} = 0.00185(T_{\text{max}} - T_{\text{min}})^2 - 0.0433(T_{\text{max}} - T_{\text{min}}) + 0.4023 \]
(S9.13)

According to Amatya et al. (1995, Table 4), weekly or monthly data should be used in the Hargreaves-Samani model in the computation of reference crop evapotranspiration rates.

Modified Hargreaves

The modified Hargreaves procedure (Droogers and Allen, 2002), as adapted by Adam et al. (2006, Equation 6), allows one to estimate the reference crop evapotranspiration without wind data using monthly values of rainfall, air temperature, daily air temperature range, and extra-terrestrial solar radiation as follows:

\[ET_{\text{Harg,}j} = 0.0013S_0(T_j + 17.0)(\overline{T}_{\text{Di}} - 0.0123P_j)^{0.76} \]
(S9.14)

where, for a given month \(j \), \(ET_{\text{Harg,}j} \) is the modified Hargreaves monthly reference crop evapotranspiration (mm day\(^{-1}\)), \(T_j \) is the mean monthly daily air temperature (°C), \(\overline{T}_{\text{Di}} \) is the mean monthly difference between mean daily maximum air temperature and mean daily minimum air temperature (°C) for month \(j \), \(P_j \) is the monthly precipitation (mm month\(^{-1}\)), and \(S_0 \) is the mean monthly water equivalent for extraterrestrial solar radiation (mm day\(^{-1}\)). If \(\overline{T}_{\text{Di}} \) data are unavailable, New et al. (2002) have provided 10′ latitude/longitude gridded mean monthly diurnal air temperature range. Again, following the approach of Adam et al. (2006, Equations 7, 8, 9 and 10), \(S_0 \) is estimated by:

\[S_0 = 15.392d_r^2\sin(lat)\sin(\delta) + \cos(lat)\cos(\delta)\sin(\omega_s) \]
(S9.15)

where \(lat \) is the latitude of the location in radians (negative for southern hemisphere), \(d_r \) is the relative distance between the earth and the sun, given by:

\[d_r^2 = 1 + 0.033\cos\left(\frac{2\pi}{365}\text{DoY}\right) \]
(S9.16)

where \(\text{DoY} \) is the Day of Year (see Section S3), \(\omega_s \) is the sunset hour angle in radians (see Adam et al., 2006, page 22 for boundary conditions) and is given by:

\[\omega_s = \arccos(-\tan(lat)\tan(\delta)) \]
(S9.17)

and \(\delta \) is the solar declination in radians given by:

\[\delta = 0.4093\sin\left(\frac{2\pi}{365}\text{DoY} - 1.405\right) \]
(S9.18)

Evapotranspiration estimates are based on a monthly time-step.

Application based on energy balance

A very different approach to the application of energy balance is by McLeod and Webster (1996, Equations 8 and 9) who used data from an instrumented irrigation channel to estimate channel evaporation from:

\[E_{ic} = \frac{(R_n + Q_v - Q_t) \Delta t}{(1 + B + \frac{c_w T_s}{\lambda})} \]
(S9.19)

where \(E_{ic} \) is the evaporation from the irrigation channel (mm day\(^{-1}\)), \(R_n \) is the net radiation on the water surface (MJ m\(^{-2}\) day\(^{-1}\)), \(Q_v \) is the heat flux advected into the water body (MJ m\(^{-2}\) day\(^{-1}\)), \(Q_t \) is the heat flux increase in stored energy (MJ m\(^{-2}\) day\(^{-1}\)), \(B \) is the Bowen Ratio, \(c_w \) is specific heat of water (MJ kg\(^{-1}\) °C\(^{-1}\)), \(T_s \) is the temperature of the evaporated water (°C), \(\Delta t \) is time interval over which the fluxes are estimated (day), and \(\lambda \) is the latent heat of vaporisation (MJ kg\(^{-1}\)).
Supplementary Material

Section S10 Estimating deep lake evaporation

Based on a review of the literature, Table S5 provides guidelines to define deep and shallow lakes for the purpose of estimating lake evaporation. (The background to Table S5 is discussed in the Section S11.)

Kohler and Parmele (1967)

The Penman estimate of open-water evaporation, \(E_{penOW} \), (Equation (12)) is a starting point to estimate evaporation from a deep lake using the Kohler and Parmele (1967) procedure. To account for water advected energy and heat storage, Kohler and Parmele (1967, Equation 12) recommended the following relationship:

\[
E_{DL} = E_{penOW} + \alpha_{KP} (A_w - \frac{\Delta Q}{\Delta t})
\]

(S10.1)

where \(E_{DL} \) is the evaporation from the deep lake (mm day\(^{-1}\)), \(E_{penOW} \) is the Penman open-water evaporation (mm day\(^{-1}\)), \(\alpha_{KP} \) is the proportion of the net addition of energy from advection and storage used in evaporation during \(\Delta t \), \(A_w \) is the net water advected energy during \(\Delta t \) (mm day\(^{-1}\)), and \(\frac{\Delta Q}{\Delta t} \) is the change in stored energy (mm day\(^{-1}\)). Kohler and Parmele (1967, page 1002) illustrated their method adopting \(\Delta t = 1 \) day. The three other terms are complex and following Dingman (1992, Equations 7.38, 7.31 and 7.32 respectively) can be computed from:

\[
\alpha_{KP} = \frac{\Delta}{\Delta + \frac{4 \varepsilon_w \sigma (T_w + 273.2)^2}{\rho_w \lambda K_E u}}
\]

(S10.2)

\[
A_w = \frac{c_w \rho_w}{\lambda} (P_d T_p + SW_{in} T_{swin} - SW_{out} T_{swout} + GW_{in} T_{gwin} - GW_{out} T_{gwowt})
\]

(S10.3)

\[
\Delta Q = \frac{c_w \rho_w}{A_L \lambda} (V_2 T_{L2} - V_1 T_{L1})
\]

(S10.4)

where \(\Delta \) is the slope of the vapour pressure curve (kPa °C\(^{-1}\)) at air temperature, \(\varepsilon_w \) is the effective emissivity of the water (dimensionless), \(\sigma \) is the Stefan-Boltzman constant (MJ m\(^{-2}\) day\(^{-1}\) K\(^{-4}\)), \(T_w \) is the temperature of the water (°C), \(T_p \) is the temperature of precipitation (°C), \(c_w \) is the specific heat of water (MJ kg\(^{-1}\) °C\(^{-1}\)), \(P_d \) is the precipitation rate (mm day\(^{-1}\)), \(\lambda \) is the latent heat of vaporization (MJ kg\(^{-1}\)), \(K_E \) is a coefficient that represents the efficiency of the vertical transport of water vapour (kPa\(^{-1}\)), \(u \) is mean daily wind speed (m day\(^{-1}\)), SW and GW represent surface and ground water inflows and outflows as per subscript (mm day\(^{-1}\)) and V’s and T’s represent respective average lake volumes (m\(^3\)) and temperatures (°C), \(A_L \) is lake area (m\(^2\)), and 1 and 2 identify values at the beginning and end of \(\Delta t \). Generally, for surface lakes GW will be small with respect to SW and can be ignored, but for a deep void following surface mining, groundwater may need to be assessed. Estimation of \(K_E \) (m day\(^2\) kg\(^{-1}\)) is based on Equation (S10.5), but may need to be adjusted for atmospheric stability (see Dingman, 1992, Equation 7.2):

\[
K_E = 0.622 \frac{\rho_a}{p \rho_w 6.25 \left[\ln \left(\frac{2 m - z_d}{z_0} \right) \right]^2}
\]

(S10.5)

where \(\rho_a \) is the density of air (kg m\(^3\)), \(\rho_w \) is the density of water (kg m\(^3\)), \(p \) is the atmospheric pressure (kPa), \(z_m \) is the height above ground level (m) at which the wind speed...
and vapour pressure are measured (m), \(z_d \) is the zero-plane displacement (m), and \(z_0 \) is the roughness height of the surface (m).

Harbeck (1962) found that lake area accounted for much of the variability in \(K_E \) and, as an alternative to Equation (S10.5), \(K_E \) can be estimated by (Dingman, 1992, Equation 7-19):

\[
K_E = 1.69 \times 10^{-5} A_L^{-0.05}
\]
(S10.6)

where \(A_L \) is the lake area (\(\text{km}^2 \)).

Because changes in daily energy cannot be estimated with sufficient accuracy relative to the other fluxes, Kohler and Parmele (1967, page 1002) based their comparisons on periods of a week to a month, not daily.

Vardavas and Fountoulakis (1996)

The Vardavas and Fountoulakis (1996) method for estimating monthly evaporation from a deep lake, in which seasonal heat storage effects are significant, is based on the Penman equation (Penman, 1948):

\[
E_{DL} = \left(\frac{\Delta}{\Delta + \gamma} \right) E_s + \left(\frac{\gamma}{\Delta + \gamma} \right) E_a
\]
(S10.7)

where \(E_{DL} \) is the evaporation (\(\text{mm day}^{-1} \)) for a deep lake, \(E_s \) is the evaporation component (\(\text{mm day}^{-1} \)) due to net heating, \(E_a \) is the evaporation component (\(\text{mm day}^{-1} \)) due to wind, \(\Delta \) is the slope of the vapour pressure curve (\(\text{kPa} \ \degree \text{C}^{-1} \)) at air temperature, and \(\gamma \) is the psychrometric constant (\(\text{kPa} \ \degree \text{C}^{-1} \)).

\[
E_s = \frac{1}{\lambda} (R_n + \Delta H)
\]
(S10.8)

where \(R_n \) is the net radiation (\(\text{MJ m}^{-2} \ \text{day}^{-1} \)) at the water surface, \(\lambda \) is the latent heat of vaporization (\(\text{MJ kg}^{-1} \)), and \(\Delta H \) is the net energy gained from heat storage in the water body (\(\text{MJ m}^{-2} \ \text{day}^{-1} \)).

Following Vardavas and Fountoulakis (1996, Equation 28), \(\Delta H \) is determined on a monthly basis using:

\[
\Delta H_{j,j-1} = -48.6 \bar{h} \frac{\Delta T_{wl}}{t_m}
\]
(S10.9)

where \(\Delta H_{j,j-1} \) is the change in heat storage (\(\text{W m}^{-2} \)) from month \(j-1 \) to month \(j \), \(\bar{h} \) is the mean lake depth (m), \(\Delta T_{wl} = T_{w,j} - T_{w,j-1} \), i.e., the change in surface water temperature (\(\degree \text{C} \)) from month \(j-1 \) to month \(j \), and \(t_m \) is the number of days in the month.

\(E_a \) is the wind component defined by Penman (1948) as:

\[
E_a = f (\bar{u}) [v_a(T_a) - v_a(T_a)]
\]
(S10.10)

where \(\bar{u} \) is average daily wind speed (\(\text{m s}^{-1} \)), \(v_a(T_a) \) is the saturation vapour pressure (\(\text{mbar} \)) at the water surface evaluated at air temperature \(T_a (\degree \text{C}) \), and \(v_a(T_a) \) is the vapour pressure (\(\text{mbar} \)) at a given height above the water surface evaluated at the air temperature (\(\degree \text{C} \)), and

\[
f (\bar{u}) = C_u \bar{u}
\]
(S10.11)

where \(C_u \) can be evaluated as set out below. Estimated values of \(C_u \) by Vardavas and Fountoulakis (1996, page 144) for four Australian reservoirs (Manton, Cataract, Mundaring and Eucumbene) range from 0.11 to 0.13 \(\text{mm day}^{-1}/(\text{m s}^{-1} \ \text{mbar}) \).
Following Vardavas (1987, Equation 23) C_u can be evaluated from:

$$
C_u = \frac{3966}{T_a \ln \left(z_2/z_{om}\right) \ln \left(z_1/z_{om}\right)}
$$

(S10.12)

where T_a is the air temperature (K), z_1 is the height above ground of the wind speed measurement (m), z_2 is the height above ground of the water vapour measurement (m), z_{om}, the momentum roughness (m), and z_{ov}, the roughness length for water vapour (m), are given by:

$$
z_{om} = 0.135 \frac{\nu}{u_*}
$$

(S10.13)

$$
z_{ov} = 0.624 \frac{\nu}{u_*}
$$

(S10.14)

where ν is the kinematic viscosity of air (m2 s$^{-1}$) and is estimated by:

$$
\nu = 2.964 \times 10^{-7} T_a^{3/2} / p
$$

(S10.15)

where T_a is the air temperature (K), and p is the atmospheric pressure (kPa).

The friction velocity, u_*, is computed from:

$$
\bar{u} = \frac{u_*}{k} \ln \left(\frac{z_2 u_*}{0.135 \nu} \right)
$$

(S10.16)

where k is von Kármán’s constant, \bar{u} is the mean wind speed (m s$^{-1}$), z_2 is the height above ground of water vapour measurement (m), and ν is the kinematic viscosity of air (m2 s$^{-1}$). u_* can be estimated by a numerical iteration technique, e.g., Newton-Raphson.

Other approaches that may be appropriate

Several approaches that have been included under **Section S11 Estimating shallow lake evaporation** may be appropriate for deep lakes. In particular, McJannet et al. (2008b) procedure has been tested for two deep lakes.
Supplementary Material

Section S11 Estimating shallow lake evaporation

Based on a review of the literature, Table S5 provides guidelines to define deep and shallow lakes for the purpose of estimating lake evaporation. According to Monteith (1981, page 9), it is inappropriate to apply the Penman equation to estimating evaporation from open water bodies that exceed “… a metre or so in depth…” because of the damping due to heat stored in the water. Morton’s (1986) analysis indicates “… the CRLE model has little advantage over the CRWE at depths less than 1.5 m”. For shallow lakes of 3 m mean depth, de Bruin (1978) and Sacks et al (1994) consider it unnecessary to take account of seasonal heat storage in estimating lake evaporation, whereas Fennessey (2000), in his study of a shallow lake of 2 m mean depth, incorporated monthly heat storage. For a shallow lake (average depth of 0.6 m and characterised by a bottom crust of a thick frozen mud layer) in Hudson Bay, Canada, Stewart and Rouse (1976) incorporated heat flux through the bottom of the lake and the heat capacity of the water.

Based on the above evidence we suggest as a general guide that seasonal heat storage be taken into account for shallow lakes with an average water depth of 2 m or more. For shallow lakes with water depth less than 2 m, we prefer the Penman equation (Equation (12)) with the 1956 wind function.

Shallow lake evaporation by Penman equation based on the equilibrium temperature (Finch, 2001)

To take heat storage into account, Finch (2001) used the concept of equilibrium temperature and tested the accuracy of the method by estimating evaporation from a shallow lake. A description of the model is presented by Keijman (1974) and de Bruin (1982). As noted in Section (2.1.4), the equilibrium temperature is the temperature of the surface water when the net rate of heat exchange at the water surface is zero (Edinger et al., 1968, page 1139). In this context, Sweers (1976, page 377) assumes that, although on clear calm days a water body will exhibit strong temperature gradients near the water surface, the top 0.5 m – 1.0 m or so is well mixed and its mean temperature specifies the surface temperature.

To estimate shallow lake evaporation, Finch (2001) adopted Penman (1948) but incorporated the Sweers (1976, Equation 18) wind function (Equation (S11.2)) and the equilibrium temperature. In the method it is assumed the water column is well mixed and the heat flux at the bed of the water body can be neglected (Finch, 2001, pages 2772). For each daily time-step, the following nine equations are computed:

\[\lambda E = \frac{\Delta(R_n^w - G_w) + \gamma \lambda f(u)(v_a^*-v_a)}{(\Delta + \gamma)} \]
\[\lambda f(u) = 0.864(4.4 + 1.82u) \]

where \(E \) is daily lake evaporation (mm day\(^{-1}\)), \(R_n^w \) is the net daily radiation (MJ m\(^{-2}\) day\(^{-1}\)) based on the surface water temperature, \(G_w \) is the daily change in heat storage (MJ m\(^{-2}\) day\(^{-1}\)), \(\lambda \) is the latent heat of vaporisation (MJ kg\(^{-1}\)), \((v_a^*-v_a) \) is the vapour pressure deficit (kPa) at air temperature, \(\gamma \) is psychrometric constant (kPa K\(^{-1}\)), \(\Delta \) is the slope of the saturation vapour curve (kPa K\(^{-1}\)) at air temperature, and \(u \) is the mean daily wind speed (m s\(^{-1}\)) at 10 m. (Note that many wind measuring instruments are at a height of 2 m rather than 10 m and for those situations the wind speed needs to be adjusted by Equation (S4.4).)

However, before \(R_n^w \) and \(G_w \) can be estimated the daily surface water temperature of the lake needs to be estimated as follows:
\[T_{w,i} = T_e + (T_{w,i-1} - T_e) \left(1 - e^{-\tau}\right) \]
(S11.3)

where \(T_{w,i} \) and \(T_{w,i-1} \) are the surface water temperatures (°C) on day \(i \) and day \(i - 1 \) respectively, and \(T_e \) is the equilibrium temperature (°C) and \(\tau \) is equilibrium temperature time constant (days). \(T_e \) and \(\tau \) are estimated as follows:

\[T_e = T_{wb} + \frac{R^*_w}{4\sigma(T_{wb}+273.1)^3 + \alpha(T)}(\Delta_{wb}+\gamma) \]
(Finch, 2001, page 2773)
(S11.4)

where \(R^*_w \) is the net radiation (MJ m\(^{-2}\) day\(^{-1}\)) based on wet-bulb temperature (\(T_{wb} \)) (°C) and \(\tau \) is the equilibrium temperature time constant (days), \(T_{wb} \) is the mean daily wet-bulb temperature (°C), \(R_s \) is the shortwave solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(\alpha \) is the albedo for a water surface (Finch (2001) estimated using Payne (1972)), \(R_l \) is incoming longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(C_f \) is a cloudiness factor, \(\sigma \) is the Stefan-Boltzman constant (MJ m\(^{-2}\) K\(^{-4}\) day\(^{-1}\)), \(T_a \) is mean daily air temperature (°C) at screen height, \(\Delta_{wb} \) is the slope of the saturation vapour curve (kPa K\(^{-1}\)) at wet-bulb temperature, \(\gamma \) is the psychrometric constant (kPa K\(^{-1}\)), \(\rho_w \) is the density of water (kg m\(^{-3}\)), \(c_w \) is the specific heat of water (MJ m\(^{-2}\) K\(^{-4}\) day\(^{-1}\)), and \(h_w \) is the depth of the lake (m).

Thus, having an estimate of the surface water temperatures from Equation (S11.3), \(R^*_n \) and \(G_w \) are estimated from:

\[R^*_n = (1 - \alpha)R_s + R_l - C_f[\sigma(T_a + 273.1)^4 + 4\sigma(T_a + 273.1)^3(T_{wb} - T_a)] \]
(S11.7)

\[G_w = \rho_w c_w h_w (T_{w,i} - T_{w,i-1}) \]
(S11.8)

where \(R^*_n \) is the net radiation given the surface water temperature, \(T_{w,i} \) and \(T_{w,i-1} \) are the surface water temperature on day \(i \) and day \(i - 1 \) respectively.

Next, \(\lambda E \) can be estimated using Equation S11.1 and the depth of water \(h_w \) on day \(i + 1 \) is estimated as:

\[h_{i+1} = h_i + P_{i+1} - E_i \]
(S11.9)

where \(P_{i+1} \) is the rainfall measured on day \(i + 1 \) and \(E_i \) is the lake evaporation on day \(i \).

According to deBruin (1982, page 270) because water bodies up to 10 m deep are generally well mixed by wind, the model is of practical significance. The meteorological data are assumed to be land-based (Finch, 2001, page 2771) and the model uses a daily time-step.

The model was applied by Finch (2001) to a small reservoir at Kempton Park, UK resulting in the annual evaporation being 6% lower than the measured value.

Shallow lake evaporation by finite difference model (Finch and Gash, 2002)

Finch and Gash (2002) proposed a finite difference approach as an alternative to estimating shallow lake evaporation. The steps are set out as follows (Finch and Gash, 2002, Figure 1):

1. Estimate \(\alpha \) (shortwave albedo for the water surface).
2. Set the first estimate of T_w (average water temperature) at the beginning of the current time-step to the value at the end of the previous time-step.
3. Calculate the average T_w.
4. Calculate R_n (net radiation).
5. Calculate $f(u)$ (u is wind speed at a height of 10 m).
6. Calculate λE (latent heat flux) and H (sensible heat flux).
7. Calculate W (change in heat storage in water column during the current time-step).
8. Calculate a new estimate of T_w at the end of the time-step.
9. Is the difference between the last estimate of T_w and the present one < 0.01?
10. If no, return to step 3, otherwise proceed to the next time-step.

The equations to estimate the above variables are as follows (Finch and Gash, 2002):

\[
\alpha = f(g, \theta) \tag{S11.10}
\]
\[
g = \frac{R_s}{S_{con} \sin \theta} \tag{S11.11}
\]
\[
T_w = T_{w,i-1} + \left(\frac{T_{w,i-1} - T_{w,i-2}}{2}\right) \tag{S11.12}
\]
\[
R_{nw} = R_s (1 - \alpha) + R_{il} - C_f \sigma (T_w + 273.1)^4 \tag{S11.13}
\]
\[
f(u) = \frac{0.216u}{\Delta + \gamma} \text{ for } T_w \leq T_a \tag{S11.14}
\]
\[
f(u) = \frac{0.216u^{0.5 + 10(\frac{T_w - T_a}{u^2})}}{\Delta + \gamma} \text{ for } T_w > T_a \tag{S11.15}
\]
\[
\lambda E = f(u)(v_w^* - v_d) \tag{S11.16}
\]
\[
H = \gamma f(u)(T_w - T_a) \tag{S11.17}
\]
\[
\Delta W = R_n - \lambda E - H \tag{S11.18}
\]
\[
T_{w,i} = T_{w,i-1} + \frac{\Delta W}{\rho_w c_w h_w} \tag{S11.19}
\]

where α is shortwave albedo for the water surface, R_s is the incoming shortwave radiation (MJ m$^{-2}$ d$^{-1}$), S_{con} is the solar constant = 0.0820 MJ m$^{-2}$ day$^{-1}$, θ is the Sun’s altitude ($^\circ$), d_r is the ratio of the actual to mean Earth-Sun separation or the inverse relative distance Earth-Sun, T_w is average water temperature ($^\circ$C), $T_{w,i}$ and $T_{w,i-1}$ are, respectively, the estimated water temperature ($^\circ$C) at the end of the current and previous periods, T_a is the air temperature ($^\circ$C) at the reference height, R_{nw} is the net radiation (MJ m$^{-2}$ d$^{-1}$), R_{il} is incoming longwave radiation (MJ m$^{-2}$ day$^{-1}$), C_f is a cloudiness factor, σ is the Stefan-Boltzman constant (MJ m$^{-2}$ K$^{-4}$ day$^{-1}$), Δ is the slope of the saturation vapour pressure curve at air temperature (kPa K$^{-1}$), γ is the psychrometric constant (kPa K$^{-1}$), u is wind speed (m s$^{-1}$) at a height of 10 m, v_w^* is the saturation vapour pressure at the water temperature (kPa), v_d is the vapour pressure at the reference height (kPa), λE is the latent heat flux (MJ m$^{-2}$ d$^{-1}$), H is the sensible heat flux (MJ m$^{-2}$ d$^{-1}$), ΔW is change in heat storage in water column during the current time-step (MJ m$^{-2}$ d$^{-1}$), ρ_w is the density of water (kg m$^{-3}$), c_w is the specific heat of water, and h_w is the depth of water (m).

\[1\] In Equation (S11.11), we have adopted Payne’s equation (Payne, 1972, Equation 3; see also Berger et al, 1993, Equation 2) and Simpson and Paulson (1979, Equation 2) in which d_r^2 is used rather than d_r as published in the Finch and Gash (2002) paper.
\(R_s \) is either measured solar radiation or estimated from Equation S3.9 and \(R_i \) may be estimated from Equation (S3.16). Finch and Gash (2002) used Payne (1972, Table 1) to estimate \(\varpi \) knowing \(g \) and \(\theta \). \(g \) requires \(d \) to be estimated which is computed from:

\[
d^2 = 1 + 0.033 \cos \left(\frac{2\pi}{365} DoY \right)
\]

(S11.20)

where \(DoY \) is day of year (\(DoY = 1, 2, \ldots, 365 \)).

\(\theta \) is estimated as follows (Al-Rawi, 1991, Equation 1):

\[
\sin \theta = \cos (\text{lat}) \cos (\delta) \cos (\omega_s) + \sin (\text{lat}) \sin (\delta)
\]

(S11.21)

where \(\text{lat} \) is latitude in radians, \(\delta \) is the solar declination angle in radians, and \(\omega_s \) is the sunset hour angle in radians. \(\delta \) and \(\omega_s \) can be estimated from Equations (S9.18) and (S9.17) respectively.

Lake evaporation by Penman-Monteith equation based on the equilibrium temperature (McJannet et al., 2008b)

McJannet et al. (2008b) adopted the Penman-Monteith as the basis of applying the equilibrium temperature to estimate lake evaporation for a range of water bodies – shallow and deep lakes and an irrigation canal. Their approach is similar to that used by Finch (2001). We reproduce below the method proposed and tested by McJannet et al. (2008b). Evaporation is estimated as follows:

\[
E_{McJ} = \frac{1}{\lambda} \left(\frac{\Delta_w (Q^* - G_w) + 86400 \rho_a c_a (v_w^* - v_a)}{\rho_a c_a (v_w^* - v_a) r_a} \right)
\]

(S11.22)

where \(E_{McJ} \) is the evaporation from the water body (mm day\(^{-1} \)), \(Q^* \) is the net radiation (MJ m\(^{-2} \) day\(^{-1} \)), \(G_w \) is the change in heat storage in the water body (MJ m\(^{-2} \) day\(^{-1} \)), \(\rho_a \) is the density of air (kg m\(^{-3} \)), \(c_a \) is the specific heat of air (MJ kg\(^{-1} \) K\(^{-1} \)), \(v_w^* \) is the saturation vapour pressure at water temperature (kPa), \(v_a \) is the daily vapour pressure (kPa) taken at 9:00 am, \(\lambda \) is the latent heat of vaporisation (MJ kg\(^{-1} \)), \(\Delta_w \) is the slope of the saturation water vapour curve at water temperature (kPa °C\(^{-1} \)), \(\gamma \) is the psychrometric constant (kPa °C\(^{-1} \)), and \(r_a \) is the aerodynamic resistance (s m\(^{-1} \)) and is defined by Calder and Neal (1984, page 93) and McJannet et al. (2008b, Appendix B, Equation 10) as:

\[
r_a = \frac{\rho_a c_a}{\gamma f(u)}
\]

(S11.23)

where from Sweers (1976, page 398) and modified by McJannet et al. (2008b, Appendix B, Equation 11) and converting units from W m\(^{-2} \) mbar\(^{-1} \) to MJ m\(^{-2} \) kPa\(^{-1} \) day\(^{-1} \) yields:

\[
f(u) = \left(\frac{A}{5} \right)^{0.05} (3.80 + 1.57 u_{10})
\]

(S11.24)

where \(u_{10} \) is the wind speed (m s\(^{-1} \)) at 10 m and \(A \) (km\(^2\)) is the area of the water body, and other variables are defined previously. (For elongated water bodies, the square of the width was adopted as the area (Sweers, 1976, page 398).)

\(Q^* \) in Equation (S11.22) is defined as:

\[
Q^* = R_s (1 - \alpha) + (R_{il} - R_{ol})
\]

(S11.25)

where \(R_s \) is the total daily incoming shortwave radiation (MJ m\(^{-2} \) day\(^{-1} \)), \(\alpha \) is albedo for water (= 0.08), \(R_{il} \) is the incoming longwave radiation (MJ m\(^{-2} \) day\(^{-1} \)), and \(R_{ol} \) is the outgoing longwave radiation (MJ m\(^{-2} \) day\(^{-1} \)).
\[R_{it} = \left(C_f + (1 - C_f) \left(1 - (0.261 \exp(-7.77 \times 10^{-4} T_a^2)) \right) \right) \sigma (T_a + 273.15)^4 \] (S11.26)

where \(C_f \) is the fraction of cloud cover, \(T_a \) is the mean daily air temperature (°C), and \(\sigma \) is the Stefan-Boltzmann constant (MJ m\(^{-2}\) K\(^{-4}\) day\(^{-1}\)).

\[R_{oi} = 0.97 \sigma (T_w + 273.15)^4 \] (S11.27)

where \(T_w \) is the water temperature (°C) which will vary for each time-step and must be estimated before Equation (S11.22) can be applied.

Because the heat storage in a water body affects surface water temperatures and, therefore, evaporation, it is necessary to predict heat storage changes over time which depend on the equilibrium temperature (\(T_e \)), the time constant for the storage (\(\tau \)), as well as the water temperature (\(T_w \)). Equilibrium temperature is the surface temperature at which the net rate of heat exchange is zero (see Section 2.1.4). Again, following McJannet et al. (2008b, Equation 23), we estimate water temperature, based on de Bruin (1982, Equation 10), from the following equation:

\[T_w = T_e + (T_{w0} - T_e) \exp \left(-\frac{1}{\tau}\right) \] (S11.28)

where \(T_{w0} \) is the water temperature (°C) in the previous time-step, \(T_e \) is the equilibrium temperature (°C), and \(\tau \) is the time constant (day).

Following McJannet et al. (2008b, Equation 5), the time constant (\(\tau \)) in days is given by (de Bruin, 1982, Equation 4):

\[\tau = \frac{\rho_w c_w h_w}{4\sigma (T_{wb}+273.15)^3 + f(u)(\Delta_{wb}+\gamma)} \] (S11.29)

where \(\rho_w \) is the density of water (kg m\(^{-3}\)), \(c_w \) is the specific heat of water (MJ kg\(^{-1}\) K\(^{-1}\)), \(h_w \) is the water depth (m), \(\Delta_{wb} \) is the slope of the saturation water vapour curve (kPa °C\(^{-1}\)) estimated at wet-bulb temperature (\(T_n \)) (°C). The water depth \(h_w \) could be a time-series if required (see Equation (S11.9)).

The equilibrium temperature is estimated from (de Bruin, 1982, Equation 3):

\[T_e = T_{wb} + \frac{Q_{wb}^*}{4\sigma (T_{wb}+273.15)^3 + f(u)(\Delta_{wb}+\gamma)} \] (S11.30)

where \(Q_{wb}^* \) is the net radiation at wet-bulb temperature and is estimated by:

\[Q_{wb}^* = R_s (1 - \alpha) + (R_{it} - R_{oi}^{wb}) \] (S11.31)

and where \(R_{oi}^{wb} \) is the outgoing longwave radiation (MJ m\(^{-2}\) day\(^{-1}\)) at wet-bulb temperature and is estimated as follows:

\[R_{oi}^{wb} = \sigma (T_a + 273.15)^4 + 4\sigma (T_a + 273.15)^3 (T_{wb} - T_a) \] (S11.32)

The change in heat storage, \(G_w \), is calculated from (McJannet et al. (2008b, Equation 31)):

\[G_w = \rho_w c_w h_w (T_w - T_{wb}) \] (S11.33)

Thus, for the time-step in question, \(T_w \) and \(G_w \) are now known and \(E_{McJ} \) in Equation (S11.22) can be computed.

The McJannet et al. (2008b) model operates at a daily time-step.
Based on the above approach, McJannet et al. (2008b) applied gridded climate data to estimate average daily (and monthly) evaporation for a range of water bodies from an irrigation canal to five large lakes. Overall, the modelled estimates are within 10% of the independent evaporation estimates (McJannet et al., 2008b, Section 5.7), however, the correlation coefficient between monthly modelled and observed evaporation values is very low for two of the lake studies.

A worked example is provided in Section S19.

The differences between Finch (2001) and McJannet et al. (2008b) procedures to estimate lake evaporation are:

<table>
<thead>
<tr>
<th></th>
<th>Finch (2001)</th>
<th>McJannet et al. (2008b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopted Penman (1948) equation</td>
<td>Adopted Penman-Monteith equation</td>
<td></td>
</tr>
<tr>
<td>Wind function</td>
<td>Wind function depends on wind speed</td>
<td>Wind function depends on wind speed and lake area</td>
</tr>
<tr>
<td>Adjusted water level</td>
<td>Adjusted water level for daily rainfall and daily evaporation</td>
<td>No adjustment of water level for rainfall or evaporation</td>
</tr>
<tr>
<td>Tested on one</td>
<td>Tested on three shallows lakes, a weir, an irrigation channel and two deep reservoirs</td>
<td></td>
</tr>
<tr>
<td>10 m lake in UK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lake evaporation by lake-specific vertical temperature profiles

Sometimes for a lake, monthly or seasonal vertical water temperature profiles are available that can be used to estimate the vertical water body heat flux (G_w in Equations (S11.1) and (11.22)). Fennessey (2000) provides an example for a shallow lake in Massachusetts, U.S as follows:

$$ G_w(t) = \frac{dH(t)}{dt} $$

where $H(t)$ is the total heat energy content of the lake per unit area of the lake surface at time t (MJ m$^{-2}$) and is computed by:

$$ H(t) = \frac{\rho_w c_w}{A_s} \sum_{i=1}^{m} \left[\frac{T_w(z_i+1) + T_w(z_i)}{2} \right] V_i $$

where the lake is segregated into m horizontal layers, each layer being $(z_{i+1} - z_i)$ thick (m), ρ_w is the density of water (kg m$^{-3}$), c_w is the specific heat of water (MJ kg$^{-1}$ K$^{-1}$), A_s is the surface area of the lake (m2), $T_w(z_i)$ and $T_w(z_{i+1})$ are respectively the water temperature at z_i and z_{i+1}, and V_i is the volume (m3) of each layer defined by:

$$ V_i = \frac{(A_{i+1} + A_i)(z_{i+1} - z_i)}{2} $$

Thus, $G_w(t)$ can be incorporated in the Penman based equation of Finch (2001) (Equation S11.1) or in the Penman-Monteith based equation of McJannet et al. (2008b) (Equation S11.22).
Supplementary Material

Section S12 Estimating evaporation from lakes covered by vegetation

Brezny et al. (1973, Table 1) measured the evaporation rate of cattail, *Typha augustfolia* L., in 0.36 m² tanks in Rajasthan, India. Over approximately 75 days, they found that the evaporation from tanks with plants was 52% more than the evaporation from tanks without plants. In contrast, based on a comparison of measured evaporation from Barren Box Swamp (a lake covered with cattail, *Typha orientalis* PRESL., in NSW, Australia) compared with a lake devoid of vegetation, Linacre et al. (1970, Table IV) observed over three days 34% less evaporation from the swamp compared to a nearby lake without vegetation. Linacre et al. (1970, page 385) attributed the lower observed evaporation from swamp compared with the lake evaporation to lower albedo of the clear water in the lake, to the shelter provided by the reeds in the swamp, and to the internal resistance to water movement of the reeds. These contrasting results illustrate the difficulty in assessing the impact of vegetation on evaporation from lakes.

There is an extensive body of literature addressing the question of evaporation from lakes covered by vegetation. Abtew and Obeysekera (1995) summarise the results of 19 experiments which, overall, show that the transpiration of macrophytes is greater than open surface water. However, most experiments were not carried out in situ. On the other hand, Mohamed et al. (2008) lists the results of 11 in situ studies (estimating evaporation by eddy correlation or Bowen Ratio procedures) in which wetland evaporation is overall less than open surface water.

Based on theoretical considerations and a literature survey, Idso (1981) offered the following observations. Firstly, reliable experiments assessing the relative rates of evaporation from vegetated water bodies and open surface water must be conducted in situ (Idso (1981, page 46). Secondly, for extensive water bodies covered by vegetation, evaporation will most likely be lower than the open surface water estimate (Idso (1981, page 47). It is noted that Anderson and Idso (1987, page 1041) concluded that canopy surface geometry is important in the evaporative process and, therefore, for small or narrow canopies (e.g., macrophytes along stream reaches where advective energy is significant), evaporative water losses greater than open water can occur.

Drexler et al. (2004, page 2072) in a review of models and methods to estimate wetland evapotranspiration offered the following comments.

1. For many wetland types, the physical processes are poorly characterised.
2. Generalisation is difficult because of variable nature of the results, even within well-studied vegetation types.
3. The wetland environment is very varied, making it particularly difficult to measure ET.
4. Seasonal variation of ET is also an important consideration.

A number of models – Penman (Section S4), Penman-Monteith (Section S5), the Shuttleworth-Wallace variation of Penman-Monteith (Section S5), and Priestley-Taylor (Section 2.1.3) – have been used in several studies (Wessel and Rouse, 1994; Abtew and Obeysekera, 1995; Souch et al. 1998; Bidlake, 2000; Lott and Hunt, 2001; Jacobs et al., 2002; Drexler et al., 2004) to estimate the rate of evaporation from a lake covered by vegetation. Table S7 summarises seven comparisons and suggests that the weighted Penman-Monteith method which is able to account for variations of r_a and r_s for different vegetation surface
performs satisfactorily. For this model, and based on one experiment, the mean model estimate of lake evaporation compared to a mean measured value was 1.10.

Readers are referred to a very recent review by Clulow et al (2012) in which they discuss, inter alia, under what conditions Penman, Priestley-Taylor and Penman-Monteith models can be used to estimate actual evaporation from a lake covered by vegetation.
Supplementary Material

Section S13 Estimating potential evaporation in rainfall-runoff modelling

Several procedures including Penman-Monteith, Priestley-Taylor and Morton have been used in daily and monthly rainfall-runoff modelling at a daily or monthly time-step to estimate potential evaporation/evapotranspiration. In the Penman-Monteith model the aerodynamic and surface roughness coefficients (r_a and r_s respectively) need to be specified in Equation (5). Some typical values of r_a and r_s are listed in Table S2. In a sensitivity analysis in which the Penman-Monteith equation was incorporated into the SHE model (Abbott et al., 1986a, b), Beven (1979, page 176 and Figure 5) adopted constant values of $r_a = 46 \text{ s m}^{-1}$ for grass and 4 s m^{-1} for pine forest. However, values varied from mid-day ($r_s = 50 \text{ s m}^{-1}$ for grass and 100 s m^{-1} for pine forest) to mid-night ($r_s = 200 \text{ s m}^{-1}$ for grass and 400 s m^{-1} for pine forest). Beven concluded that the evapotranspiration estimates were very dependent on the values of the aerodynamic and canopy resistance parameters.

In using the Priestley-Taylor algorithm (Equation (6)) for estimating catchment potential evapotranspiration, the parameter α_{PT} needs to be specified. Zhang et al (2001, Equation 4) adopted 1.28 and Raupach et al. (2001, page 1152) recommended 1.26. It should be noted that the α_{PT} ‘constant’ is commonly set to 1.26 although optimised values vary greatly depending on the moisture and advective conditions in which the measurements are made (see Table S8). This is not surprising as the Priestley-Taylor algorithm was developed assuming non-advective conditions and without recourse to measurement of the aerodynamic component.

One of the advantages of Morton’s (1983a) CRAE method to estimate potential evapotranspiration is that it does not require wind data as input and, therefore, has been used extensively in Australia to estimate historical monthly potential evapotranspiration in rainfall-runoff modelling (Chiew and Jayasuria, 1990; Chiew and McMahon, 1993; Chiew et al., 1993; Jones et al., 1993; Siriwardena et al., 2006). In many water engineering applications, analysis depends on measured or estimated monthly runoff and potential evaporation over an extended period, often more than 100 years.

There are at least two options available to analysts to estimate Morton’s ET_{Wet} in Australia. One approach is to use the mean monthly areal potential values (equivalent to wet environment areal evapotranspiration using Morton’s nomenclature) produced jointly by the CRC for Catchment Hydrology and the Bureau of Meteorology in 2001 (see http://www.bom.gov.au/climate/averages and Wang et al. (2001) with detailed methodology described in Chiew et al. (2002)). For daily modelling, the mean monthly values can be disaggregated into equal daily values. A major disadvantage with this approach is that there is no variation in potential evapotranspiration from year to year. However, Chapman (2003, Section 5) applied four rainfall-runoff models to 15 catchments in Australia and concluded that, in terms of modelling daily streamflow, equally good results could be obtained by using average monthly potential evapotranspiration data in the place of daily potential evapotranspiration values. Rather than adopting average monthly values, Oudin et al. (2005) used average daily values in an application of four rainfall-runoff models to 308 catchments in Australia, France and the United States. They concluded that the average daily potential evaporation values resulted in modelled runoffs that were little different to those produced using daily varying potential evaporation (Oudin et al., 2005, Tables 3 and 4).
The second option is to estimate Morton’s wet environmental evapotranspiration from climate data using Equation (18). Chiew and Jayasuria (1990) reviewed Morton’s wet environmental evapotranspiration and compared, for three locations in south-eastern Australia, daily estimates of Morton’s wet environmental evapotranspiration with Penman’s free-water evaporation. They concluded that (i) Morton’s model can estimate successfully daily global and net radiation (Chiew and Jayasuria, 1990, page 293); (ii) Morton’s wet environment evaporation can be used to represent potential evapotranspiration in rainfall-runoff modelling (Chiew and Jayasuria, 1990, page 293); (It should be noted that this assessment was based on Penman rather than the more appropriate Penman-Monteith model.) (iii) Morton’s ET_{Wet} cannot estimate low potential evapotranspiration values accurately and underestimates high values (Chiew and Jayasuria, 1990, page 291).

Based on data for 19 climate stations in Australia from 1970 to 1989, Chapman (2001) demonstrated that overall pan evaporation data are a better estimate of potential evapotranspiration than maximum air temperature. Furthermore, he developed the following simple relationship (applicable only to Australia) that could be used if no other data were available to estimate potential evaporation for catchment modelling purposes:

$$ET_{eqPM} = A_p E_{Pan} + B_p$$ \hspace{1cm} (S13.1)

where ET_{eqPM} is the daily equivalent Penman-Monteith potential evaporation (mm day$^{-1}$), E_{Pan} is the daily Class-A pan evaporation (mm day$^{-1}$), and A_p and B_p are given by:

$$A_p = 0.17 + 0.011 Lat$$ \hspace{1cm} (S13.2)

$$B_p = 10^{(0.66 - 0.211 Lat)}$$ \hspace{1cm} (S13.3)

where Lat is the latitude of the catchment in degrees South.
Supplementary Material

Section S14 Estimating evaporation of intercepted rainfall

It is recognised that interception is variable in space and in time. According to Klaassen et al. (1998) the interception storage of water in dense forests is an important process and varies seasonally (Gerrits et al., 2010) and across vegetation types. Crockford and Richardson (2000) note that because interception is dependent on rainfall and other meteorological variables it is difficult to make conclusions about interception losses for specific vegetation types.

Because potential evaporation rates are higher in the hotter months of a year and lower during colder months, interception is seasonal. Other factors such as rainfall intensity, wind, and snow also impact interception storage and, hence, interception evaporation (Gerrits et al., 2010). Gerrits et al. (2010) note that although interception storage can be very variable; for the beech forest they studied in Luxembourg, its size played a minor role in evaporation. Stewart (1977) has shown that the evaporation of transpired water is very different to the evaporation of intercepted water and, hence, it is important that these two components are considered separately.

Although Herbst et al. (2008) state that the Gash model (Gash, 1979) is the most widely and successfully used interception model, Gerrits et al. (2010) adopted the Rutter model (Rutter et al., 1971, 1975) in their analysis. In his model, Gash (1979) incorporated the Penman-Monteith equation which was found by Herbst et al. (2008) to give estimates of wet canopy evaporation equivalent to those estimates from the eddy covariance energy balance approach. In the 1971 Rutter model the authors (Rutter et al., 1971) incorporated the Penman (1956) equation to estimate potential evaporation.

Teklehaimanot and Jarvis (1991) concluded from their experiments that evaporation rates from a wet canopy could be satisfactorily modelled by the Penman (1948) equation. Moreover, they further showed that the actual evaporation from a partially wet canopy could be modelled by multiplying the Penman evaporation by C_{ret}/S_{can}, where C_{ret} is the amount of water retained on the canopy (mm) and S_{can} is the storage capacity of the canopy (mm).

An issue of double counting can arise when evaporation of rainfall interception from the canopy is estimated independently from transpiration. The impact of double counting according to Gash and Stewart (1975) can be an over-estimation of interception evaporation by about 7% (see also Miralles et al., 2011).

Readers are referred to a recent and comprehensive review by Muzylo et al. (2009), who addressed the theoretical basis of 15 interception models including their evaporation components, who identified inadequacies and research questions, and who noted there were few comparative studies and little information about uncertainty in measured and modelled parameters.

Modelling evapotranspiration-interception in an urban area

Grimmond and Oke (1991) developed a hydrologic model of an urban area at an hourly time-step to estimate evaporation over a range of meteorological conditions. The model includes the Penman (1948) equation modified by Monteith (1965) for vegetation surface and the Rutter et al. (1971) interception model modified by Shuttleworth (1978) to provide a smooth transition between wet and dry vegetation canopies. In addition, anthropogenic heat flux and stored heat flux were also modelled. The model was tested for a small urban area in Vancouver, Canada and according to the authors the model showed promise.
Supplementary Material

Section S15 Estimating bare soil evaporation

Following Philip (1957), Ritchie (1972, page 1205) proposed a two-stage model to estimate bare soil evaporation. Salvucci (1997) developed further the Ritchie approach defining the evaporation loss for stage-1 by:

\[E_{\text{stage 1}} = \overline{E}_{\text{Penman}} \times t_1 \]

(S15.1)

where \(E_{\text{stage 1}} \) is the cumulative stage-1 bare soil evaporation (mm) which, according to Allen et al. (1998, page 145), should not exceed the readily evaporable water (REW) which they define as the maximum depth of water that can be evaporated from the top-soil without restriction. Typical REW values are: sand 2 – 7 mm, loam 8 – 10 mm and clay 8 – 12 mm. \(t_1 \) is the length of the stage-1 atmosphere-controlled evaporation period (day) which is defined as:

\[t_1 = \frac{\text{REW}}{\overline{E}_{\text{Penman}}} \]

(S15.2)

\(\overline{E}_{\text{Penman}} \) is the daily average stage-1 actual evaporation (mm day\(^{-1}\)) and is assumed to be at or near the rate of Penman evaporation. McVicar et al. (2012, page 183) prefers to use the term energy-limited rather than stage-1. Alternatively, a more rigorous procedure to estimate \(t_1 \) is recommended by Dingman (1992, page 293) who suggests the end of stage-1 is readily observed from ground or satellite observations of albedo.

Discussing evaporation from bare soil, Monteith (1981, pages 10 and 11) observes that “When bare soil is thoroughly wetted, the soil surface behaves like water in so far as the relative humidity of the air in contact with the surface is 100%”. Monteith (1981, page 11) further adds that as a matter of observation the rate of evaporation “…is usually very close to the rate for adjacent short vegetation, despite differences in radiative and aerodynamic properties”.

Stage-2 evaporation (the water-limited stage, McVicar et al. (2012, page 183)), is dependent on stage-1 and two limiting cases need to be considered.

1. Where the unsaturated hydraulic conductivity (mm day\(^{-1}\)), \(K_{us} \ll \overline{E}_{\text{Penman}} \), \(t_1 \) would occur with relatively low permeability soils.
2. Where \(K_{us} \gg \overline{E}_{\text{Penman}} \) and, therefore, the cumulative drainage is much greater than the cumulative actual evaporation.

Salvucci (1997, Equations 18 and 19 respectively) developed the following empirical equations for the two cases:

For \(K_{us} \ll \overline{E}_{\text{Penman}} \)

\[E_{bsoil}(t) = E_{\text{stage 1}} \left[-0.621 + 1.621 \left(\frac{t}{t_1} \right) \right]^{0.5}, \ t \geq t_1 \]

(S15.3)

For \(K_{us} \gg \overline{E}_{\text{Penman}} \)

\[E_{bsoil}(t) = E_{\text{stage 1}} \left[1 + 0.811 \ln \left(\frac{t}{t_1} \right) \right], \ t \geq t_1 \]

(S15.4)

where \(E_{bsoil}(t) \) is the cumulative bare soil evaporation up to time \(t \).

As a check on the total evaporable water (TEW), typical values for a range of soils are provided by Allen et al. (1998, Table 19). For example, sand = 6 – 12 mm, loam = 16 – 22 mm and clay = 22 – 29 mm. TEW is defined by Allen et al. (1998, Equation 73) as:
\[TEW = 10(\theta_{FC} - 0.5\theta_{WP})z_e \]

(S15.5)

where \(\theta_{FC} \) is the soil moisture content (%) at field capacity, \(\theta_{WP} \) is the soil moisture content (%) at wilting point, \(z_e \) is the depth of the surface soil layer that is subject to drying from evaporation. If this is unknown, Allen et al. (1998, page 144) recommend \(z_e = 0.10 - 0.15 \) m.

It is interesting to note that Penman (1948, page 137) observed from his experiments that freshly wetted bare soil evaporated at about 90% of the rate observed for open surface water for the same weather conditions.

Based on FAO56 methodology (Allen et al., 1998), Allen et al. (2005) developed a two-stage strategy (energy limited and water limited stages) to estimate bare soil evaporation. Mutziger et al (2005) applied the methodology to seven data sets and concluded that model accuracy was about \(\pm 15\% \).
Supplementary Material

Section S16 Class-A pan evaporation equations and pan coefficients

Although some researchers, e.g., Watts and Hancock (1984, page 295), are critical of an evaporative pan as a reliable climatic instrument (they list 10 potential problems), it should be noted that Roderick et al. (2009b, Section 4) comment “…that the pan evaporation record provides the only direct measurement of changing evaporative demand…” which is crucial in climate change studies. In Australia, 60 stations have been identified as high quality Class-A pan evaporation stations (Jovanovic et al., 2008).

Equations: Kohler et al. (1955)

Kohler et al. (1955) (see Dingman (1992, Equation 7.41)) developed the following empirical equations to estimate daily open-water evaporation, E_{fw} (mm day$^{-1}$) from Class-A pan evaporation data:

\[
E_{fw} = 0.7 [E_{Pan} + 0.064p\alpha_{Pan} (0.37 + 0.00255u_{Pan})|T_{Pan} - T_a|^{0.88}] \quad \text{for } T_{Pan} > T_a
\]

(S16.1)

\[
E_{fw} = 0.7 [E_{Pan} - 0.064p\alpha_{Pan} (0.37 + 0.00255u_{Pan})|T_{Pan} - T_a|^{0.88}] \quad \text{for } T_{Pan} < T_a
\]

(S16.2)

where E_{Pan} is the daily evaporation measured by an unguarded Class-A pan (mm day$^{-1}$), p is the atmospheric pressure (kPa), α_{Pan} is the proportion of energy exchanged through the sides of the pan and is specified in Equation (S16.3), u_{Pan} is the average daily wind speed at a height of 150 mm above the pan (km day$^{-1}$), and T_{Pan} and T_a are respectively the mean daily pan water and air temperature ($^\circ$C).

\[
\alpha_{Pan} = 0.34 + 0.0117T_{Pan} - 3.5 \times 10^{-7}(T_{Pan} + 17.8)^3 + 0.00135u_{Pan}^{0.36}
\]

(S16.3)

Wind run for anemometers not at 150 mm above the pan should be adjusted using Equation (S4.4). Based on an intercontinental comparison, Burman (1976) concluded that the Kohler et al. (1955) equations were superior to empirical methods proposed by Christiansen (1968) and Oliver (1961) which are not included here.

Equations: Chiew & McMahon (1992)

Chiew and McMahon (1992, Appendix) developed daily, 3-day, weekly and monthly pan coefficients as simple linear regressions of the form:

\[
E_{Pen,j} = I_j + G_j E_{Pan,j}
\]

(S16.4)

where for month j, $E_{Pen,j}$ is the Penman (1948) estimate of evaporation for a land environment rather than open water, $E_{Pan,j}$ is the evaporation from a Class-A pan, and I_j and G_j are respectively the intercepts and the gradients of daily, 3-day, weekly and monthly totals. Values of I_j and G_j for 26 climate stations in Australia are given in Chiew and McMahon (1992).

Equations for estimating Reference Crop evapotranspiration, E_{RC}, are presented by Allen et al. (1998, page 55, Table 7) taking into account the site of the pan in terms of the upwind fetch as follows:

\[
ET_{RC} = K_{Pan}E_{Pan}
\]

(S16.5)
where K_{Pan} is the pan coefficient given by:

for a green vegetated fetch (1 to 1000 m) within a dry area at least 50 m wide

$$K_{Pan} = 0.108 - 0.0286u_2 + 0.0422 \ln(FET) + 0.1434 \ln(RH_{mean}) - 0.000631[\ln(FET)]^2 \ln(RH_{mean})$$

(S16.6)

for a dry fetch (1 to 1000 m) within a green vegetated area at least 50 m wide

$$K_{Pan} = 0.61 + 0.00341RH_{mean} - 0.00289u_2ln(FET) - 0.0000050u_2FET + 0.00327u_2\ln(FET) - 0.00289u_2\ln(86.4u_2) - 0.0106ln(86.4u_2)ln(FET) + 0.00063[\ln(FET)]^2ln(86.4u_2)$$

(S16.7)

where FET is the fetch or length of the identified surface (m), u_2 is the daily wind speed at 2 m height, and RH_{mean} is the mean daily relative humidity (%). According to Allen et al. (1998, Table 7), Equations (S16.6) and (S16.7) should not be used outside the following ranges $1 \leq FET \leq 1000$ m, $30\% \leq RH_{mean} \leq 84\%$, and $1 \text{ms}^{-1} \leq u_2 \leq 8 \text{m s}^{-1}$.

A range of pan coefficients based on Equations (S16.6) and (S16.7) are displayed in Table S9 which illustrates the importance of appropriately specifying the microclimate around a pan in order to have a representative estimate of Reference Crop evapotranspiration. Because $E_{pan} = \frac{ET_{RC}}{f_{Pan}}$, we are able to use the table to explore how the evaporating power (in this case being represented by pan evaporation E_{pan}) is affected quantitatively by the characteristics of a site. For example, the pan evaporation under a light wind, low humidity and a green vegetated fetch will be reduced by $\sim 14\%$ for a 10 m fetch compared with a 1000 m one; for a dry fetch under the same conditions, the pan evaporation will increase by $\sim 20\%$.

Equations: Snyder et al. (2005)

Based on pan data in California, Snyder et al. (2005, Equations 6, 8 and 9) proposed the following set of empirical equations to estimate reference crop evaporation.

$$ET_{RC} = 10\sin \left(\left[\frac{E_{pa}}{19.2} \right] \frac{\pi}{2} \right)$$

(S16.8)

$$E_{pa} = E_{pan}F_{100}$$

(S16.9)

$$F_{100} = -0.0035[\ln(F)]^2 + 0.0622[\ln(F)] + 0.79$$

(S16.10)

where ET_{RC} is the reference crop evapotranspiration (mm day$^{-1}$), E_{pan} is the Class-A pan evaporation (unscreened) (mm day$^{-1}$) and F is the upwind grass fetch (m). The method is suitable for semi-arid conditions but would require calibration for humid or windier climates (Snyder et al., 2005, page 252).

Ghare et al. (2006) introduced modifications to the Snyder equations but field testing in Italy and Serbia by Trajkovic and Kolakovic (2010) showed that the original Snyder model performed better.

Computed monthly and annual Class-A pan coefficients

Although it is not possible to check independently that pan coefficients are correct, one can compare computed values with those found in the literature. Published results of estimating the pan coefficients for the two Penman wind functions (Equations S4.5 and S4.6) are presented in Table S10 along with pan coefficients for Reference Crop evapotranspiration.
and the Priestley-Taylor potential evaporation. The exceptionally low pan coefficients for Priestley-Taylor are based on 16 climate stations in Jordan. The coefficients are plotted against mean annual unscreened Class-A pan evaporation in Figure S2 which illustrates, at least for this arid environment, that adopting a spatially constant pan coefficient may be unwise. This observation is consistent with McVicar et al. (2007, Figure 10) who observed for the Coarse Sandy Hill catchments in north-central China both spatial and seasonal variations in pan coefficients.

Published monthly and annual open-water pan coefficients are often extrapolated to other locations. Care needs to be taken as several local factors will impact pan coefficients including relative humidity (Alvarez et al., 2007; Hoy and Stephens, 1979; Kohler et al., 1955), reservoir dimensions (Alvarez et al., 2007), degree of stratification (Hoy and Stephens, 1979), presence of aquatic plants (Winter, 1981), and lake turbidity and salinity (Grayson et al., 1996). Locally calibrated coefficients are preferred.

Australian pan coefficients

In Australia, in order to prevent the consumption of water by birds and animals, bird guards (wire screens) were installed progressively on the Class-A evaporation pans during the late 1960s and early 1970s, and by 1975 most pans were operating with screens which reduce the evaporation. van Dijk (1985) compared the evaporation recorded from evaporation pans with and without bird guards at four Australian locations between 1967 to 1971. The average monthly effect at the four locations ranged from 4.1% to 8.2% reduction in measured evaporation, with an average of 6.6%. These reductions are less than the values of 13% for humid areas and 10% for semi-arid regions noted in a review by Lincare (1994). Based on the findings of van Dijk (1985), the Australian Bureau of Meteorology (2007) recommends an annual conversion factor of +7%. Jovanovic et al. (2008) have developed a high-quality monthly pan evaporation data set that includes 60 locations across Australia covering the period from about 1970 to present for monitoring evaporation trends.

In Australia, the associated climate data required to estimate open-water evaporation (E_{fw}) (mm/unit time) using Equation (S16.1) or (S16.2) are not available at many pan evaporation sites and, as a consequence, monthly (or annual) pan coefficients are developed using:

$$E_{fw,j} = K_j E_{Pan,j}$$ \hspace{1cm} (S16.11)

where j is the specific month and K_j is the average monthly pan coefficient. Traditionally, K_j is assumed constant, although Linacre (1994, Figure 1) using Stanhill’s (1976) data for 12 sites world-wide found that for very high evaporation rates K_j decreased from the nominal 0.7 value.

Hoy and Stephens (1977; 1979) calculated the monthly pan coefficients of seven Australian reservoirs by comparing the evaporation of a Class-A pan with the heat budget method over several years. The average monthly pan estimates are listed in Table S11. Annual pan coefficients were estimated for a greater number of Australian reservoirs by Hoy and Stephens (1977; 1979) and these results are listed in Table S12.

We have computed monthly pan coefficients for 68 sites across Australia by correlating monthly evaporation values from Class-A evaporation pans with corresponding Penman evaporation estimates using his 1956 wind function, based on measured daily climate data at the same or a nearby location, thus yielding open-water evaporation. Thirty-nine of the 68 sites are part of the high quality evaporation pan network (Jovanovic et al., 2008, Table 1);
another 29 stations with monthly pan coefficients have been included in the analysis for spatial completeness. Pan coefficients are presented in Table S6. At least 10 monthly values are used in calculating 79.4% of the computed monthly pan coefficients. The analysis of the results in the table shows that mean monthly pan coefficients (weighted for length of record) across the 68 Australian stations is 0.80. This average value compares with 0.76 (based on published data in Table S10 for Penman (1956) and Penman (1948) the latter adjusted by Equation (S4.8) to be equivalent to Penman (1956)). It should be noted that in computing the monthly solar radiation term in the Penman model, the coefficients a_s and b_s in Equation (S3.9) were optimised to 0.05 and 0.65 respectively (Section S6).

For many practical problems, annual evaporation estimates need to be disaggregated into monthly values or monthly evaporation values into daily values. This process is not straightforward, when there is no concurrent at-site climate data which could be used to provide guidance as to how the annual or monthly values should be partitioned.

For annual evaporation, a standard approach is to use monthly pan coefficients if available. Another approach, that is available to Australian analysts, is to apply the average monthly values of point potential evapotranspiration for the given location and pro rata the values to sum to the annual evaporation. Maps for each calendar month are available in Wang et al. (2001). This approach is based on the recent analysis by Kirono et al. (2009, Figure 3) who found that, for 28 locations around Australia, Morton’s potential evapotranspiration ET_{Pot} correlated satisfactorily ($R^2 = 0.81$) with monthly Class-A pan evaporation although over-estimating pan evaporation by 8%.

For monthly disaggregation to daily data in Australia one could utilize the analysis of Rayner (2005) who reports on synthetic gridded daily Class-A pan evaporation data based on solar radiation and vapour pressure deficit (Jeffrey et al., 2001). The grids are at a spatial resolution of 0.05° (~5 km) and cover the period 1919 to present. McVicar et al. (2007, page 211) note, however, that if pan coefficients are spatially averaged across a range of climates the averaged value will tend to be damped.

Modifying pan data for estimating evaporation from a deep lake

To estimate deep lake evaporation from pan data, Webb (1966, Equation 3) proposed an alternative approach based on vapour pressure to estimate monthly lake evaporation by summing daily values as follows:

$$E_{L,d} = 1.50 \frac{v_L^* - v_4}{v_P^* - v_4} E'_{pan}$$ \hspace{1cm} (S16.12)

where $E_{L,d}$ is the daily estimate of lake evaporation (mm day$^{-1}$), E'_{pan} is the daily pan evaporation (mm day$^{-1}$), v_L^* is the afternoon average lake saturation vapour pressure (mbar), v_P^* is the afternoon maximum pan saturation vapour pressure (mbar), and v_4 is the afternoon average vapour pressure 4 m above the ground surface (mbar). The monthly evaporation value is the sum of the daily values. The empirical coefficient of 1.50 was established from Lake Hefner data.
Supplementary Material

Section S17 Comparing published evaporation estimates

A detailed review of the literature identified 27 papers in which comparisons were made between model estimates of potential or actual evaporation or evapotranspiration and field measurements (water balance studies, Bowen Ratio or eddy correlation), lysimeter observation or comparisons between evaporation equations. Detailed discussion of field measurements of evaporation are outside the scope of this paper. We refer readers to Harbeck (1958), Grant (1975), Myrup et al. (1979), Brutsaert (1982), Dingman (1992, Sections 7.8.2 and 7.8.3), Lenters et al. (2005), and Ali et al. (2008) for applications of the techniques. Details for each of the 27 studies are listed Table 5. For each study two items of information are generally provided in the table – the ratio of the average model values (daily, monthly or annual) to a base value, and a measure of error generally as a root mean square error or standard error of estimate. For four studies, multiple sets of results are available.

The bias results (ratios in Table 5) are consolidated in Table 6 under six headings. Under the first two headings each model result is compared with measured observations. For the six lake studies a water balance, eddy correlation or Bowen Ratio estimate were the basis of the comparison. For the seven non-lake studies, the base estimates were from eddy correlation or Bowen Ratio experiments. The third comparison of four studies is based on lysimeter observations. The remaining three sets of comparisons are between various models and Penman-Monteith, Priestley-Taylor or Hargreaves-Samani estimates. The results are summarised in Figure 3 where each model ratio value includes at least two studies.

In interpreting these results, readers should note the comment of Winter and Rosenberry (1995, page 983) who stated that “Regardless of their intended use, it is not uncommon for equations developed for determination of potential evapotranspiration from vegetation to be used for determination of evaporation from open water”.

The information in Figure 3 requires some interpretation. Firstly, the ratios in column (1) “Lakes”, column (2) “Lysimeter” and column (3) “Land” may be regarded as absolute estimates in the sense that the modelled estimates are compared against measured evaporation. Secondly, ratios in columns (4) “Relative to PM” and (5) “Relative to PT” are relative to Penman-Monteith and Priestley-Taylor set to a ratio value of 1.00. Thirdly, the values in columns (1) and (2) are for open-water (“Lakes”) or “Lysimeter” measurements, in which water is not limiting in either comparison. On the other hand, values in column (3) will have been influenced by the availability of soil moisture to the plants and by the vegetation type and, therefore, will not be evaporating or transpiring at a potential rate. This would explain why Turc (Tu) and the Priestley-Taylor (PT) values differ markedly between columns (2) and (3).

Table 5 also contains error information mainly as a root mean square error (RMSE) or as a standard error of estimate (SEE). We have summarised the relevant results in Table 7 which lists the root mean square error (mm day$^{-1}$) or the standard error of estimate (mm day$^{-1}$). Because the values of RMSE or SEE were available for Priestley-Taylor in all comparisons, relative errors (as the ratio of RMSE or SEE for the particular model to that for PT) have been computed. These results are summarised as the median for each method. As a guide, the median RMSE for the six Priestley-Taylor analyses is 0.97 mm day$^{-1}$ and 0.66 mm day$^{-1}$ for the eight SEE values.
Supplementary Material

Section S18 Comparing evaporation estimates based on measured climate data for six Australian automatic weather stations

Table S13 shows the results of estimating annual evaporation for 14 daily and monthly evaporation/evapotranspiration models based separately on daily and monthly climate data recorded at six widely distributed Australian automatic weather stations over the period January 1979 to March 2010. The latitude and longitude of each station are listed in the table along with the mean annual rainfall estimated for the concurrent period used in the computation of evaporation estimates. Annual values are the sum of 12 monthly means. The number of days and complete months of data available at each station is as follows: Perth Airport (6238 days, 192 months), Darwin Airport (11307 days, 334 months), Alice Springs Airport (11288 days, 320 months), Brisbane Airport (3674 days, 111 months), Melbourne Airport (3842 days, 116 months), and Grove (Companion) (9622 days, 241 months). The authors advise that care needs to be exercised in extending more widely any conclusions arising from this analysis of only six stations.

The results in the table are listed under four main groups: those that estimate actual open-water evaporation (i) Penman 1956 (P56), Priestley-Taylor (PT), Makkink (Ma); (ii) those that estimate reference crop evaporation – FAO-56 Reference Crop (FAO-56 RC), Blaney-Criddle (BC), Hargreaves-Samani (HS), modified Hargreaves (mod H), Turc (Tu); (iii) models that estimate actual evapotranspiration – Morton (Mo), Brutsaert-Stricker (BS), Granger-Gray (GG), Szilagyi-Jozsa (SJ); and (iv) three additional methods that include Thornthwaite’s monthly potential estimates (Th), PenPan modelled estimates of actual Class-A pan evaporation (PP), and actual evaporation measured by a Class-A evaporation pan. In interpreting these results readers should note that we have applied each method as set out in the relevant reference except we adopted a time-step of both one day and one month. For some models the recommended time-step for analysis is longer than one day. This information is provided where the model is discussed in the paper.

For the daily data in each group, the ratio of the annual evaporation to the value for a key method is calculated and listed as the “Daily ratio”. Also for each station, the ratio of annual estimates based on monthly and daily data (M to D ratio) are compared. Several observations follow:

1. Relative to the key procedure in each group, the evaporation estimates in Table S13 are reasonably consistent, excepted for Blaney-Criddle, across the six sites which have very different climates. As noted in Section S9 the Blaney-Criddle procedure was developed for application in the dry western United States and, therefore, may not perform successfully in regions subject to a different climate (like Melbourne or Grove) where the procedure appears to perform inadequately. See also item 9 below.

2. On averaging the daily ratios for the open water group, the actual evaporation estimates for Priestley-Taylor and Makkink are 0.88× and 0.59× the Penman 1956 estimate. This is consistent with our summary of published data presented in Table 6 and Figure 3.

3. For the reference crop group, Hargreaves-Samani and Turc are 1.10× and 0.90× the FAO-56 Reference Crop average, again consistent with the lysimeter data listed in Table 6 and Figure 3.

4. The PenPan estimates for the six stations are consistent with the values plotted in Figure S3 which are based on 68 Australian stations.

5. The results in Table S13 show that for Penman 1956, Priestley-Taylor, Makkink, FAO-56 Reference Crop, Turc, Granger-Gray and PenPan there is less than ~2% difference in
annual evaporation estimates using a daily or a monthly time-step. However, for Szilagyi-Jozsa and Brutsaert-Stricker, the monthly values are respectively 7% and 10% higher than the daily values whereas for Hargreaves-Samani and Blaney-Criddle the monthly values are 14% and 22% lower than the daily estimates.

6. In the analysis we observed that Brusaert-Stricker and Szilagyi-Jozsa generated negative daily evapotranspiration (12.7% and 15.9% of days respectively). This inadequacy was noted by Brutsaert and Stricker (1979, page 448) in the analysis of their model results. In our analysis the negative evaporations occurred mainly in winter (May through to August).

7. It was also observed that for Grove using Szilagyi-Jozsa model, unrealistically high equilibrium temperatures (say > 100°C) were computed for 2.8% of days. These unrealistic temperatures appeared to occur mainly on days when the difference between maximum and minimum humidity is around zero.

8. On average, mean annual actual evaporation estimates at a site should be less than mean annual rainfall at the site. Brusaert-Stricker, Granger-Gray and Szilagyi-Jozsa meet this criterion for three, two and two of the six sites respectively. On the other hand, except Brisbane Morton’s estimates were less than the mean annual rainfalls.

9. Blaney and Criddle also generated many negative daily evapotranspiration estimates, even for Alice Springs which climate-wise is semi-arid and not too dissimilar to the dry western United States.
Supplementary Material

Section S19 Worked examples

This set of worked examples is based on data from the Automatic Weather Station 015590 Alice Springs Airport (Australia). The daily data and other relevant information for the worked examples are for the 20 July 1980 as follows:

Station: Alice Springs Airport
Station reference number: 015590
Latitude: 23.7951 °S
Elevation: 546 m
Maximum daily air temperature: 21.0 °C
Minimum daily air temperature: 2.0 °C
Maximum relative humidity: 71%
Minimum relative humidity: 25%
Daily sunshine hours: 10.7 hours
Wind run at 2 m height: 51 km day⁻¹ (=51×1000/(24×60×60) = 0.5903 m s⁻¹)

General constants used in worked examples:
Solar constant (G_{sc}) = 0.0820 MJ m⁻² min⁻¹
Stefan-Boltzmann (σ) = 4.903×10⁻⁹ MJ m⁻² day⁻¹ °K⁻⁴
von Kármán constant (k) = 0.41
Latent heat of vaporization (λ) = 2.45 MJ kg⁻¹
Mean density of air (ρ_a) = 1.20 kg m⁻³ at 20°C
Specific heat of air (c_a) = 0.001013 MJ kg⁻¹ K⁻¹
Mean density of water (ρ_w) = 997.9 kg m⁻³ at 20°C
Specific heat of water (c_w) = 0.00419 MJ kg⁻¹ K⁻¹

Specific constants used in worked examples:
Albedo for water = 0.08 (adopted from Table S3)
Albedo for reference crop α = 0.23 (adopted from Table S3)
Priestley-Taylor α_{PT} = 1.26 for PT equation
Priestley-Taylor α_{PT} = 1.28 for BS equation

Worked example 1: Intermediate calculations for daily analysis
Estimate the values of the intermediate variables associated with computing daily evaporation.

Mean daily temperature (T_{mean})

$$T_{mean} = \frac{T_{\text{max}} + T_{\text{min}}}{2} \quad \text{(see Equation (S2.1))} \quad (S19.1)$$

$$T_{\text{mean}} = \frac{21.0 + 2.0}{2} = 11.5°C \quad (S19.2)$$

Saturation vapour pressure at T_{max} ($v_{T_{\text{max}}}$)

$$v_{T_{\text{max}}} = 0.6108\exp\left[\frac{17.27T_{\text{max}}}{T_{\text{max}}+237.3}\right] \quad \text{(see Equation (S2.5))} \quad (S19.3)$$

$$v_{T_{\text{max}}} = 0.6108\exp\left[\frac{17.27\times21.0}{21.0+237.3}\right] = 2.4870 \text{ kPa} \quad (S19.4)$$
Saturation vapour pressure at T_{min} ($v_{T_{\text{min}}}^*$)

$$v_{T_{\text{min}}}^* = 0.6108\exp\left(\frac{17.27T_{\text{min}}}{T_{\text{min}}+237.3}\right)$$ (see Equation (S2.5)) \hspace{1cm} (S19.5)

$$v_{T_{\text{min}}}^* = 0.6108\exp\left(\frac{17.27\times2.01}{2.0+237.3}\right) = 0.7056 \text{ kPa}$$ \hspace{1cm} (S19.6)

Daily saturation vapour pressure (v_a^*)

$$v_a^* = \frac{v_{T_{\text{max}}}^*+v_{T_{\text{min}}}^*}{2}$$ (see Equation (S2.6)) \hspace{1cm} (S19.7)

$$v_a^* = \frac{2.4870 + 0.7056}{2} = 1.5963 \text{ kPa}$$

Mean daily actual vapour pressure (v_a)

$$v_a = v_{T_{\text{max}}}^*\frac{R_{\text{H}_{\text{max}}}}{100}+v_{T_{\text{min}}}^*\frac{R_{\text{H}_{\text{min}}}}{100}$$ (see Equation (S2.7)) \hspace{1cm} (S19.8)

$$v_a = \frac{0.7056\times71 + 2.4870\times25}{200} = 0.5614 \text{ kPa}$$ \hspace{1cm} (S19.9)

Slope of saturation vapour pressure at T_{mean} (Δ)

$$\Delta = 4098\left(0.6108\exp\left(\frac{17.27T_{\text{mean}}}{T_{\text{mean}}+237.3}\right)\right)/(T_{\text{mean}}+237.3)^2$$ (see Equation (S2.4)) \hspace{1cm} (S19.10)

$$\Delta = 4098\left(0.6108\exp\left(\frac{17.27\times11.5}{11.5+237.3}\right)\right)/(11.5+237.3)^2 = 0.0898 \text{ kPa} \circ C^{-1}$$ \hspace{1cm} (S19.11)

Atmospheric pressure

$$p = 101.3\left(\frac{293-0.0065Elev}{293}\right)^{5.26}$$ (see Equation (S2.10)) \hspace{1cm} (S19.12)

$$p = 101.3\left(\frac{293-0.0065\times546}{293}\right)^{5.26} = 95.01027 \text{ kPa}$$ \hspace{1cm} (S19.13)

Psychrometric constant

$$\gamma = 0.00163\frac{P}{\lambda}$$ (see Equation (S2.9)) \hspace{1cm} (S19.14)

$$\gamma = 0.00163\left(\frac{95.01027}{2.45}\right) = 0.0632 \text{ kPa} \circ C^{-1}$$ \hspace{1cm} (S19.15)

Day of Year

1980 is a leap year, therefore

$DoY = 31 + 28 + 31 + 30 + 31 + 30 + 20 + 1 = 202$ (see Equations (S3.21 to S3.23)) \hspace{1cm} (S19.16)

Inverse relative distance Earth to Sun (d_r)

$$d_r^2 = 1 + 0.033cos\left(\frac{2\pi}{365}DoY\right)$$ (see Equation (S3.6)) \hspace{1cm} (S19.17)

$$d_r^2 = 1 + 0.033cos\left(\frac{2\pi}{365}\times202\right) = 0.9688$$ \hspace{1cm} (S19.18)

Solar declination (δ)

$$\delta = 0.409sin\left(\frac{2\pi}{365}DoY - 1.39\right)$$ (see Equation (S3.7)) \hspace{1cm} (S19.19)

$$\delta = 0.409sin\left(\frac{2\pi}{365}\times202 - 1.39\right) = 0.3557$$ \hspace{1cm} (S19.20)
Sunset hour angle (ωₛ)

\[ωₛ = \arccos[\tan(lat) \tan(δ)] \] (see Equation (S3.8)) \hspace{1cm} (S19.21)

Latitude (lat) is in radians, hence \(\text{lat} = \pi \frac{-23.7951}{180} = -0.4153 \) radians \hspace{1cm} (S19.22)

noting the negative value as Alice Springs is in the southern hemisphere.

\[ωₛ = \arccos[\tan(-0.4153) \tan(0.3557)] = 1.4063 \] \hspace{1cm} (S19.23)

Maximum daylight hours (N)

\[N = \frac{24}{\pi} ωₛ \] (see Equation (S3.11)) \hspace{1cm} (S19.24)

\[N = \frac{24}{\pi} 1.4063 = 10.7431 \text{ hours} \] \hspace{1cm} (S19.24)

Worked example 2: Estimate \(R_n \) for daily analysis

Extraterrestrial radiation (\(R_α \))

\[R_α = \frac{1440}{\pi} G_{sc} d_f^2 \left[ωₛ \sin(lat) \sin(δ) + \cos(lat) \cos(δ) \sin(ωₛ) \right] \] (see Equation (S3.5)) \hspace{1cm} (S19.26)

where \(G_{sc} \) is the solar constant

\[R_α = \frac{24\times60}{\pi} 0.082 \times 0.9688 \left[1.4063 \sin(-0.4153) \sin(0.3557) + \cos(-0.4153) \cos(0.3557) \sin(1.4063) \right] \] \hspace{1cm} (S19.27)

\[= 23.6182 \text{ MJ m}^{-2} \text{ day}^{-1} \]

Clear sky radiation (\(R_{so} \))

\[R_{so} = (0.75 + 2 \times 10^{-5} \text{Elev}) R_α \] (see Equation (S3.4)) \hspace{1cm} (S19.28)

\[R_{so} = (0.75 + 2 \times 10^{-5} \times 546) 23.6182 = 17.9716 \text{ MJ m}^{-2} \text{ day}^{-1} \] \hspace{1cm} (S19.29)

Incoming solar radiation (\(R_s \))

\[R_s = \left(a_s + b_s \frac{n}{N} \right) R_α \] (see Equation (S3.9)) \hspace{1cm} (S19.30)

Adopting \(a_s = 0.23 \) and \(b_s = 0.50 \) (see Section S3) and noting there were 10.7 hours of sunshine for the day being analysed

\[R_s = \left(0.23 + 0.5 \frac{10.7}{10.7431} \right) 23.6182 = 17.1940 \text{ MJ m}^{-2} \text{ day}^{-1} \] \hspace{1cm} (S19.31)

Note: If measured values of solar radiation (\(R_s \)) were available, the daily analysis would begin here.

Net longwave radiation (\(R_{nl} \))

\[R_{nl} = \sigma (0.34 - 0.14 \frac{R_α}{R_{so}}) \left(\frac{T_{max} + 273.2}{2} \right)^4 \left(\frac{T_{min} + 273.2}{2} \right)^4 \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right) \] (see Equation (S3.3)) \hspace{1cm} (S19.32)

where \(\sigma \) is the Stefan-Boltzmann constant

\[R_{nl} = 4.903 \times 10^{-9} (0.34 - 0.14 \times 0.5614^{0.5}) \left(\frac{(21+273.2)^4 + (2+273.2)^4}{2} \right) \left(1.35 \frac{17.194}{17.9716} - 0.35 \right) \] \hspace{1cm} (S19.33)
\[R_{nl} = 7.1784 \text{ MJ m}^{-2} \text{ day}^{-1} \]

Net incoming shortwave radiation (\(R_{ns} \))

\[R_{ns} = (1 - \alpha)R_s \text{ (see Equation (S3.2))} \]

where \(\alpha \) is the albedo for the evaporating surface, which will depend on the evaporating surface. In the worked examples that follow, water and reference crop surfaces are considered:

- **Water** \(\alpha = 0.08 \)
 \[R_{ns} = (1 - \alpha)R_s = (1 - 0.08)17.1940 = 15.8184 \text{ MJ m}^{-2} \text{ day}^{-1} \]

- **Reference crop** \(\alpha = 0.23 \)
 \[R_{ns} = (1 - \alpha)R_s = (1 - 0.23)17.1940 = 13.2393 \text{ MJ m}^{-2} \text{ day}^{-1} \]

Net radiation (\(R_n \))

\[R_n = R_{ns} - R_{nl} \text{ (see Equation (S3.1))} \]

Thus for water \[R_n = 15.8184 - 7.1784 = 8.6401 \text{ MJ m}^{-2} \text{ day}^{-1} \]

For reference crop \[R_n = 13.2393 - 7.1784 = 6.0610 \text{ MJ m}^{-2} \text{ day}^{-1} \]

Worked example 3: Estimate daily open-water evaporation using Penman equation

\[E_{PenOW} = \frac{\Delta}{\Delta + \gamma} \frac{R_{nw}}{\lambda} + \frac{\gamma}{\Delta + \gamma} E_a \text{ (see Equation (S4.1))} \]

\[\Delta = \frac{0.0898}{0.0898 + 0.0632} = 0.5870 \]

\[\gamma = \frac{0.0632}{0.0898 + 0.06325} = 0.4130 \]

Adopting the Penman 1956 wind function gives:

\[E_a = f(u)(v_a^* - v_a) \text{ (see Equations (S4.2) and (S4.3))} \]

\[E_a = (1.313 + 1.381 \times 0.5903)(1.5963 - 0.5614) = 2.2025 \text{ mm day}^{-1} \]

\[E_{PenOW} = 0.5870 \times \frac{8.6401}{2.45} + 0.4130 \times 2.2025 = 2.9797 \text{ mm day}^{-1} \]

Worked example 4: Estimate daily reference crop evapotranspiration for short grass using the FAO-56 Reference Crop procedure

\[ET_{RCsh} = \frac{0.408 \Delta (R_n - G) + \frac{900}{11.5 + 273} v_a^* - v_a)}{\Delta + \gamma (1 + 0.34u_2)} \text{ (see Equation (S5.18))} \]

In this example we assume the soil flux, \(G \), is zero which according to Allen et al., (1998, page 54; Shuttleworth, 1992, page 4.10) is a reasonable assumption for daily analysis.

\[ET_{RCsh} = \frac{0.408 \times 0.0898 (6.0610 - 0) + 0.0632 \times 0.5903(1.5963 - 0.5614)}{0.0898 + 0.0632(1 + 0.34 \times 0.5903)} \]

\[ET_{RCsh} = \frac{0.22206 + 0.10538}{0.16578} = 2.0775 \text{ mm day}^{-1} \]
Worked example 5: Estimate daily reference crop evapotranspiration for rye grass at Alice Springs using the Matt-Shuttleworth model

There are five steps in the procedure which includes Equations (S5.34) – (S5.37). The first step is to estimate the average height and surface resistance \((r_s)_c\) for rye grass, which from Shuttleworth and Wallace (2009) Table 3, is 0.30 m and 66 s m\(^{-1}\) respectively. Next, the climatological resistance is computed.

\[
\begin{align*}
r_{\text{clim}} &= 86400 \frac{\rho_a c_a (VPD)}{\Delta R_n} \quad \text{(see Equation (S5.34))} \\
&= 86400 \frac{1.20 \cdot 0.001013(1.5963 - 0.5614)}{0.0898 \cdot 6.0610} = 199.9 \text{ s m}\(^{-1}\) \\
\end{align*}
\]

The third step is to estimate \(\frac{VPD_{50}}{VPD_2}\) from Equation (S5.35)

\[
\begin{align*}
\frac{VPD_{50}}{VPD_2} &= \left(\frac{302(\Delta + \gamma) + 70\gamma u_2}{208(\Delta + \gamma) + 70\gamma u_2} \right)^{\frac{1}{r_{\text{clim}}}} \left(\frac{208}{208(\Delta + \gamma) + 70\gamma u_2} \right) - \left(\frac{302}{208} \right) \\
&= 1.4177 (S19.52)
\end{align*}
\]

Next, \(r_{50}^c\) is estimated from Equation (S5.36)

\[
\begin{align*}
r_{50}^c &= \frac{1}{(0.41)^2} \ln \left[\frac{(50 - 0.67 h_c)}{(0.123 h_c)} \right] \ln \left[\frac{(50 - 0.67 h_c)}{(0.0123 h_c)} \right] \ln \left[\frac{(2 - 0.08)}{(0.0148)} \right] \ln \left[\frac{(50 - 0.08)}{(0.0148)} \right] \\
&= 244.2 \text{ s m}\(^{-1}\) (S19.54)
\end{align*}
\]

for \(h_c = 0.3 \text{ m}\)

\[
\begin{align*}
r_{50}^c &= \frac{1}{(0.41)^2} \ln \left[\frac{(50 - 0.67 \cdot 0.3)}{(0.123 \cdot 0.3)} \right] \ln \left[\frac{(50 - 0.67 \cdot 0.3)}{(0.0123 \cdot 0.3)} \right] \ln \left[\frac{(2 - 0.08)}{(0.0148)} \right] \ln \left[\frac{(50 - 0.08)}{(0.0148)} \right] = 244.2 \text{ s m}\(^{-1}\) (S19.55)
\end{align*}
\]

The final step is to calculate \(ET_c\) from Equation (S5.37)

\[
\begin{align*}
ET_c &= \frac{\Delta R_n + \rho_a c_p v_2(VPD_2) / VPD_2}{\frac{\Delta R_n}{\Delta + \gamma} \left(1 + \frac{(r_s)_c u_2}{r_c^c} \right)} \\
&= \frac{1}{\lambda} \frac{\frac{\Delta + \gamma}{\Delta R_n}}{} \left(1 + \frac{(r_s)_c u_2}{r_c^c} \right) \\
&= \frac{1}{2.45} \frac{0.0898 \cdot 6.0610 + 1.20 \cdot 0.001013 \cdot 0.5903(1.5963 - 0.5614) (1.3574)}{0.0898 + 0.0632 \left(\frac{244.2}{244.2} \right)} = 1.4847 \text{ mm day}^{-1} (S19.57)
\end{align*}
\]

Worked example 6: Estimate daily actual evapotranspiration using the Advection-Aridity (Bruitser-Arrick Stricker) model

\[
\begin{align*}
ET_{\text{BS}} &= (2\alpha_{PT} - 1) \frac{\Delta R_n}{\Delta + \gamma} \frac{Y}{\Delta + \gamma} f(u_2) (v_a^* - v_a) \quad \text{(see Equation (S8.2))} \\
&= (1.28 - 1) \frac{244.2}{244.2} \frac{1}{2.45} \frac{0.0898 + 0.0632 \left(\frac{244.2}{244.2} \right)}{0.0898 \cdot 6.0610 + 1.20 \cdot 0.001013 \cdot 0.5903(1.5963 - 0.5614) (1.3574)} = 1.4847 \text{ mm day}^{-1} (S19.57)
\end{align*}
\]

Note for BS equation, \(\alpha_{PT} = 1.28\) for rural catchments, and for this example \(R_n\) is based on an albedo value of 0.23 (Equation (S19.36)). The 1948 Penman wind function is adopted (Equation S4.11).
\[
ET_{\text{BS}}^{\text{Act}} = \frac{0.0898}{0.0898 + 0.0632} \cdot \frac{6.0610}{2.45} - \frac{0.0632}{0.0898 + 0.0632} \cdot (2.626 + 1.381 \times 0.5903)(1.5963 - 0.5614)
\]

\[
ET_{\text{Act}}^{\text{BS}} = 2.2651 - 1.4711 = 0.7940 \text{ mm day}^{-1}
\]

Worked example 7: Estimate daily actual evapotranspiration using the Granger-Gray model

\[
ET_{\text{GG}}^{\text{Act}} = \frac{\Delta G_g - G}{R_n - G} + \frac{\gamma G_g}{\Delta G_g + \gamma} E_a \quad \text{(see Equation (S8.4))} \quad \text{(S19.61)}
\]

For this worked example we set \(G = 0 \), and note that Granger and Gray (1989, page 26) adopted the Penman (1948) wind function. Granger-Gray procedure estimates evapotranspiration rates for non-saturated lands. To illustrate the procedure, \(R_n \) is based on an albedo value of 0.23 (Equation S19.36)).

\[
E_a = f(u)(v^* - v_a) \quad \text{(see Equation (S4.2))} \quad \text{(S19.62)}
\]

\[
E_a = (2.626 + 1.381 \times 0.5903)(1.5963 - 0.5614) = 3.5614 \text{ mm day}^{-1} \quad \text{(S19.63)}
\]

\[
D_p = \frac{E_a}{R_n - G + \lambda} \quad \text{(see Equation (S8.6))} \quad \text{(S19.64)}
\]

\[
D_p = \frac{3.5614}{3.5614 + 0.0610 - 0.2845} = 0.5901 \quad \text{(S19.65)}
\]

\[
G_g = \frac{1}{0.793 + 0.20e^{4.902 D_p}} + 0.006D_p \quad \text{(see Equation (S8.5))} \quad \text{(S19.66)}
\]

\[
G_g = \frac{1}{0.793 + 0.20e^{4.902 D_p}} + 0.006 \times 0.5901 = 0.2307 \quad \text{(S19.67)}
\]

\[
ET_{\text{GG}}^{\text{Act}} = \frac{0.0898 \times 0.2307}{0.0898 \times 0.2307 + 0.0632} \cdot \frac{6.0610 - 0}{2.45} + \frac{0.0632 \times 0.2307}{0.0898 \times 0.2307 + 0.0632} \times 3.5614 \quad \text{(S19.68)}
\]

\[
ET_{\text{Act}}^{\text{GG}} = 0.6107 + 0.6188 = 1.2295 \text{ mm day}^{-1} \quad \text{(S19.69)}
\]

Worked example 8: Estimate daily actual evapotranspiration using the Szilagyi-Jozsa model

\[
ET_{\text{SJ}}^{\text{Act}} = 2E_{\text{PT}}(T_e) - E_{\text{Pen}} \quad \text{(see Equation (S8.7))} \quad \text{(S19.70)}
\]

\[
\frac{R_n}{\lambda E_{\text{Pen}}} = 1 + \gamma \frac{T_e - T_a}{v_e - v_a} \quad \text{(see Equation (S8.8))} \quad \text{(S19.71)}
\]

For this example procedure \(R_n \) is based on an albedo value of 0.23 (Equation S19.34)) and, therefore, \(E_{\text{Pen}} \) needs to be recomputed incorporating \(R_n = 6.0610 \text{ MJ m}^{-2} \text{ day}^{-1} \) and Penman’s 1948 wind function resulting in \(E_{\text{Pen}} = 2.9221 \text{ mm day}^{-1} \).

To estimate \(T_e \) (the equilibrium temperature) from Equation (S19.69), a numerical solution is required as \(v_e^* \) is a function of \(T_e \). Equation (S19.69) is rearranged as follows:

\[
T_e = T_a - \frac{1}{\gamma} \left[1 - \frac{R_n}{\lambda E_{\text{Pen}}} \right] (v_e^* - v_a) \quad \text{(S19.72)}
\]

noting from Equation (S2.5) that \(v_e^* = 0.6108 \exp \left[\frac{17.27T_e}{T_e + 237.3} \right] \).
Using Microsoft Excel Goal Seek, \(T_e = 9.900 \, ^\circ\text{C} \) (for \(T_a = 11.5 \, ^\circ\text{C} \), \(R_n = 6.0610 \, \text{MJ m}^{-2} \, \text{day}^{-1} \), \(E_{\text{pen}} = 2.923 \, \text{mm day}^{-1} \), and \(v_e = 1.2197 \, \text{kPa} \). Check that \(T_e \leq T_a \). If \(T_e > T_a \), set \(T_e = T_a \). To compute \(E_{\text{Act}}^{\text{SJ}} \), we need \(E_{\text{PT}}(T_e) \). From Equation (6) and setting \(G = 0 \), and \(\Delta \) for \(T_e = 9.900 \, ^\circ\text{C} \) is equal to 0.0818, and \(\alpha_{\text{PT}} = 1.31 \) (see penultimate paragraph in Section S8 under heading Szilagyi-Jozsa model), we obtain;

\[
E_{\text{PT}}(T_e) = \alpha_{\text{PT}} \left[\frac{\Delta}{\Delta + \gamma} \frac{R_n}{\lambda} \right]
\]

(S19.74)

\[
E_{\text{PT}}(9.900 \, ^\circ\text{C}) = 1.31 \left[\frac{0.0818}{0.0818 + 0.0632} \times \frac{6.0610}{2.45} \right] = 1.8285 \, \text{mm day}^{-1}
\]

(S19.75)

\[
E_{\text{Act}}^{\text{SJ}} = 2 \times 1.8285 - 2.923 = 0.7340 \, \text{mm day}^{-1}
\]

(S19.76)

Worked example 9: Estimate daily Class-A pan evaporation using the PenPan model

\[
E_{\text{PenPan}} = \frac{\Delta}{\Delta + \alpha_p \gamma} \frac{R_{\text{NPan}}}{\lambda} + \frac{\alpha_p \gamma}{\Delta + \alpha_p \gamma} f_{\text{Pan}}(u)(v_e - v_a) \quad \text{(see Equation (S6.1))}
\]

(S19.77)

where \(\alpha_p \) is an empirical constant = 2.4

\[
P_{\text{rad}} = 1.32 + 4 \times 10^{-4} \text{lat} + 8 \times 10^{-5} \text{lat}^2 \quad \text{(see Equation (S6.6))}
\]

(S19.78)

Noting \(\phi \) is in absolute value of latitude in degrees

\[
P_{\text{rad}} = 1.32 + 4 \times 10^{-4} \times 23.7951 + 8 \times 10^{-5} \times (23.7951)^2 = 1.3748
\]

(S19.79)

\[
f_{\text{dir}} = -0.11 + 1.31 \frac{R_s}{R_a} \quad \text{(see Equation (S6.5))}
\]

(S19.80)

\[
f_{\text{dir}} = -0.11 + 1.31 \frac{17.1940}{23.6182} = 0.8437
\]

(S19.81)

\[
R_{\text{SPan}} = [f_{\text{dir}}P_{\text{rad}} + 1.42(1 - f_{\text{dir}}) + 0.42\alpha_{\text{SS}}]R_s \quad \text{(see Equation (S6.4))}
\]

(S19.82)

where \(\alpha_{\text{SS}} = 0.26 \) (assuming short grass Table S3)

\[
R_{\text{SPan}} = [0.8437 \times 1.3748 + 1.42(1 - 0.8437) + 0.42 \times 0.26]17.1940
\]

(S18.83)

\[
R_{\text{SPan}} = 25.6375 \, \text{MJ m}^{-2} \, \text{day}^{-1}
\]

(S19.84)

\[
R_{\text{NPan}} = (1 - \alpha_A)R_{\text{SPan}} - R_{\text{nl}} \quad \text{(see Equation (S6.3))}
\]

(S19.85)

where \(\alpha_A = 0.14 \) (Section S6)

\[
R_{\text{NPan}} = (1 - 0.14)25.6375 - 7.1784 = 14.8699 \, \text{MJ m}^{-2} \, \text{day}^{-1}
\]

(S19.86)

\[
f_{\text{Pan}}(u) = 1.201 + 1.621 \, u_2 \quad \text{(see Equation (S6.2))}
\]

(S19.87)

\[
f_{\text{Pan}}(u) = 1.201 + 1.621 \times 0.5903 = 2.1578
\]

(S19.88)

\[
E_{\text{PenPan}} = \frac{0.0898}{0.0898 + 2.4 \times 0.0632} \frac{14.8699}{2.45} + \frac{2.4 \times 0.0632}{0.0898 + 2.4 \times 0.0632} \times 2.1578(1.5963 - 0.5614)
\]

(S19.89)

\[
E_{\text{PenPan}} = 2.2570 + 1.4027 = 3.6587 \, \text{mm day}^{-1}
\]

(S19.90)

For a screened Class-A pan, \(E_{\text{PenPan}} = 0.93 \times 3.6597 = 3.4035 \, \text{mm day}^{-1} \). A discussion regarding the screen factor of 0.93 can be found in Section S16.
Worked example 10: Estimate daily potential evaporation using the Makkink model

\[E_{Mak} = 0.61 \left(\frac{\Delta}{4+y} \right)^{2.45} - 0.12 \] (see Equation (S9.6)) (S19.91)

\[E_{Mak} = 0.61 \left(\frac{0.0898}{0.0898 + 0.0632} \right)^{17.1940} - 0.12 = 2.3928 \text{ mm day}^{-1} \] (S19.92)

Worked example 11: Estimate daily reference crop evapotranspiration using the Blaney-Criddle model

\[ET_{BC} = \left(0.0043 \frac{R_{H\text{min}} - \frac{n}{N}}{1.41} \right) + b_{var} P_y (0.46 T_a + 8.13) \] (S19.93)

\[(\text{see Equation (S9.7))} \]

\[b_{var} = e_0 + e_1 \frac{n}{N} + e_2 \frac{n}{N} + e_3 u_2 + e_4 \frac{n}{N} + e_5 \frac{n}{N} u_2 \] (S19.94)

\[(\text{see Equation (S9.8))} \]

\[b_{var} = 0.81917 - 0.0040922 \times 25 + 1.0705 \times \frac{10.7}{10.7431} + 0.065649 \times 0.5903 - \]
\[0.0059684 \times 25 \frac{10.7}{10.7431} - 0.0005967 \times 25 \times 0.5903 = 1.6644 \] (S19.95)

\[p_y \] is the percentage of actual day-light hours for the day compared to the number of day-light hour during the entire year \(N_{\text{year}} \). The latter can be computed from Equation (S3.11) as follows:

\[N_{\text{year}} = \sum_{j=1}^{365} \frac{24}{\pi} \omega_s \] (see Equation (S3.11)) (S19.96)

For non-leap years and leap years \(N_{\text{year}} = 4380 \) and 4393 respectively.

Thus \[p_y = 100 \frac{n}{N_{\text{year}}} = 100 \frac{10.7}{4393} = 0.2436 \]

\[ET_{BC} = \left(0.0043 \times 25 - \frac{10.7}{10.7431} - 1.41 \right) + 1.6644 \times 0.2436(0.46 \times 11.5 + 8.13) \] (S19.97)

\[ET_{BC} = -2.2985 + 5.4411 = 3.1426 \text{ mm day}^{-1} \] (S19.98)

Worked example 12: Estimate daily reference crop evapotranspiration using the Turc model

Turc (1961) proposed two equations, one for humid days and another for non-humid days (see Section S9). As the average humidity for Alice Springs on 7 July 1980 was 48%, the equation for non-humid days is adopted.

\[ET_{Turc} = 0.013(23.88 R_s + 50) \left(\frac{T_a}{T_a + 15} \right) \left(1 + \frac{50 - R_{H\text{min}}}{70} \right) \] (see Equation (S9.11))

\[ET_{Turc} = 0.013(23.88 \times 17.1940 + 50) \left(\frac{11.5}{11.5 + 15} \right) \left(1 + \frac{50 - 36.5}{70} \right) = 2.6727 \text{ mm day}^{-1} \] (S19.100)

Worked example 13: Estimate daily reference crop evapotranspiration using the Hargreaves-Samani model
\[ET_{HS} = 0.0135 C_{HS} \frac{R_n}{\lambda} (T_{max} - T_{min})^{0.5} (T_a + 17.8) \]
(see Equation (S19.101))

\[C_{HS} = 0.00185 (T_{max} - T_{min})^2 - 0.0433 (T_{max} - T_{min}) + 0.4023 \]
(see Equation (S19.102))

\[C_{HS} = 0.00185 (21 - 2)^2 - 0.0433 (21 - 2) + 0.4023 = 0.2475 \]
(see Equation (S19.103))

\[ET_{HS} = 0.0135 \times 0.2475 \times 15.381 = 4.1129 \text{ mm day}^{-1} \]

Worked example 14: Estimate monthly reference crop evapotranspiration using the modified Hargreaves model

The modified Hargreaves method operates at a monthly time-step. The appropriate data for Alice Springs for July 1980 is as follows:

- Mean maximum daily temperature: 19.500 °C
- Mean minimum daily temperature: 4.119 °C
- Mean monthly temperature: 11.810 °C
- Maximum humidity: 77.968%
- Minimum humidity: 33.032%
- Daily sunshine hours: 8.34 hours
- Wind run at 2 m height: 74.677 km day\(^{-1}\) (=74.677×1000/(24×60×60) = 0.8643 m s\(^{-1}\))
- Rainfall for month: 10.8 mm
- Mean diurnal temperature range for July: (19.500 – 4.119) = 15.381°C

\[ET_{Harg, j} = 0.0013 S_0 (T_j + 17.0) (\bar{T}D_j - 0.0123 P_j)^{0.76} \]
(see Equation (S19.104))

\[S_0 = 15.392 d^2 (\omega_z \sin(lat) \sin(\delta) + \cos(lat) \cos(\delta) \sin(\omega_z)) \]
(see Equation (S19.105))

\[S_0 = 15.392 \times 0.9688 \left(1.4063 \sin(-0.4153) \sin(0.3557) + \cos(-0.4153) \cos(0.3557) \sin(1.4063) \right) = 9.6710 \]
(see Equation (S19.106))

\[ET_{Harg, j} = 0.0013 \times 9.6710 (11.810 + 17.0) (15.381 - 0.0123 \times 10.8)^{0.76} \]
(see Equation (S19.107))

\[ET_{Harg, j} = 2.8721 \text{ mm day}^{-1} = 2.8721 \times 31 = 89.035 \text{ mm month}^{-1} \]
(see Equation (S19.108))

Worked example 15: Estimate daily potential evaporation using the Priestley-Taylor model

\[E_{PT} = \alpha_{PT} \left[\frac{\Delta}{\Delta + \gamma} \frac{R_n}{\lambda} - \frac{G}{\lambda} \right] \]
(see Equation (6))

Assuming \(G = 0.0, \frac{\Delta}{\Delta + \gamma} = 0.5870, R_n = 8.6401 \text{ MJ m}^{-2} \text{ day}^{-1} \) (for water), and adopting \(\alpha_{PT} = 1.26 \) (see Section 2.1.3), we obtain

\[E_{PT} = 1.26 \left[0.5870 \frac{8.6401}{2.45} - \frac{0.0}{2.45} \right] = 2.6083 \text{ mm day}^{-1} \]
Worked example 16: Estimate monthly potential evapotranspiration using the Thornthwaite equation

Use the Thornthwaite equation to estimate the average monthly potential evapotranspiration for July at Alice Springs. The Thornthwaite estimates are computed from mean daily temperatures and mean daily day-light hours for each month. At Alice Springs, the mean daily temperature (°C) for each month, based on the whole record, are:

Jan 29.11; Feb 28.32; Mar 25.18; Apr 20.85; May 15.70; Jun 12.43
Jul 11.90; Aug 14.56; Sep 19.86; Oct 23.22; Nov 26.40; Dec 28.07

The mean daily hours of day-light are estimated from Equation (S19.24) and for July the value is 10.68 hours.

\[E_{Th,j} = 16 \left(\frac{\text{hrday}}{12} \right) \left(\frac{\text{daymon}}{30} \right) \left(\frac{10T}{I} \right)^{a_{Th}} \]

(see Equation (S9.2))

(S19.110)

Thus the average potential evapotranspiration for the month of July is estimated as:

\[I = \sum_{j=1}^{12} \left(\frac{T_j}{5} \right)^{1.514} = 111.1827 \]

(S19.111)

\[a = 6.75 \times 10^{-7}I^3 - 7.71 \times 10^{-5}I^2 + 0.01792I + 0.49239 \]

(S19.112)

\[a = 6.75 \times 10^{-7} \times (111.1827)^3 - 7.71 \times 10^{-5} \times (111.1827)^2 + 0.01792 \times 111.1827 + 0.49239 = 2.4594 \]

(S19.113)

\(\text{hrday} \) is the mean daily day-light hours in a given month. From observed data for the month of July at Alice Springs \(\text{hrday} = 10.68 \) hours.

\[E_{Th, Jul} = 16 \left(\frac{\text{hrday}}{12} \right) \left(\frac{\text{daymon}}{30} \right) \left(\frac{10T}{I} \right)^{a_{Th}} \]

(S19.114)

\[E_{Th, Jul} = 16 \left(\frac{10.68}{12} \right) \left(\frac{31}{30} \right) \left(\frac{10 \times 11.90}{111.1827} \right)^{2.4594} = 17.391 \text{ mm month}^{-1} \]

(S19.115)

Worked example 17: Estimating deep lake evaporation using Kohler and Parmele model

Use the Kohler and Parmele (1967) model to estimate the monthly evaporation for September 1999 for a hypothetical deep lake near Melbourne. The following data are available:

Lake area at full supply level (FSL) \((A_L) \): 1.74 km\(^2\)
Lake capacity: 26.8 GL
Average water depth (\(\bar{h} \)): 27.0 m
Catchment area of lake at full supply level: 3.5 km\(^2\) (The lake is an off-stream reservoir)
Contents at beginning of September 1999 \((V_1) \): 25.000 GL
Lake water temperature at beginning of September 1999 \((T_{L1}) \): 10.5 °C
Contents at end of September 1999 \((V_2) \): 24.1194GL
Lake water temperature at end of September 1999 \((T_{L2}) \): 11.6 °C
Average lake temperature during September 1999 \((T_w) \): 10.8 °C
Rainfall for September 1999 \((P_d) \): 60 mm (2.0 mm day\(^{-1}\))
Average temperature of rain falling on reservoir in September 1999 (T_p): 10 °C
Average air temperature for September 1999 (T_a): 13.37 °C
Atmospheric pressure (p): 1004.22 (hPa) (= 100.422 kPa)
Wind run for September 1999 (u): 329.1 km day$^{-1}$
Surface water inflow for September 1999 (SW_{in}): assume 0.40 mm day$^{-1}$ at FSL
Average temperature of surface water inflow for September 1999 (T_{swin}): 11 °C
Surface water outflow for September 1999 (SW_{out}): 1.00 GL (equivalent to 19.16 mm at FSL)
Average temperature of surface water outflow for September 1999 (T_{swout}): 10.8 °C
Assume no groundwater inflow or outflow

Specific constants for Worked Examples 17 and 18:
Density of air (ρ_a): 1.2 kg m$^{-3}$
Density of water (ρ_w): 997.9 kg m$^{-3}$
Effective emissivity of water (ε_w): 0.95
Specific heat of water (c_w): 4.19 kJ kg$^{-1}$ °C$^{-1}$
Height at which the wind speed and vapour pressure are measured (z_m): 2.0 m
Zero-plane displacement (z_d): ~0.000 m
Roughness height of surface (z_0): 0.001 m for water
Latent heat of vaporization (λ): 2.45 MJ kg$^{-1}$
Stefan-Boltzmann constant (σ): 4.903 \times 10$^{-9}$ MJ m$^{-2}$ day$^{-1}$ K$^{-4}$
Slope of the vapour pressure curve based on an average September 1999 air temperature of 13.37 °C (Δ): 0.10008 kPa °C$^{-1}$
Psychrometric constant for Melbourne (γ): 0.0665 kPa °C$^{-1}$

To estimate the monthly evaporation for the hypothetical deep lake based on Kohler and Parmele (1967) we apply the following equations at a daily time-step:

$$E_{DL} = E_{PenOW} + \alpha_{KP}(A_w - \frac{\Delta Q}{\Delta t}) \text{ (see Equation (S10.1))}$$
(S19.116)

$$\alpha_{KP} = \frac{\Delta}{\Delta + \gamma + \frac{4\varepsilon_w \sigma (T_w + 273.2)^2}{\rho_w c_w \lambda K_E}} \text{ (see Equation (S10.2))}$$
(S19.117)

$$A_w = \frac{c_w \rho_w}{\lambda} (P_d T_p + SW_{in} T_{swin} - SW_{out} T_{swout} + GW_{in} T_{gwin} - GW_{out} T_{gwout})$$
(see Equation (S10.3))
(S19.118)

$$\Delta Q = \frac{c_w \rho_w}{\lambda} (V_2 T_{L2} - V_1 T_{L1}) \text{ (see Equation (S10.4))}$$
(S19.119)

$$K_E = 0.622 \frac{\rho_a}{\rho_p} \frac{6.25}{2.45} \frac{1}{\ln \left(\frac{z_m - z_d}{z_0} \right)^2} \text{ (see Equation (S10.5))}$$
(S19.120)

$$K_E = 0.622 \left[\frac{1.2}{1000} \times 997.9 \times \frac{1}{6.25} \ln \left(\frac{2.0 - 0.001}{0.001} \right) \right]^2 = 2.0627 \times 10^{-8}$$
(S19.121)

$$\alpha_{KP} = \frac{0.10008}{0.10008 + 0.0065 + 4.903 \times 10^{-9} (10.8 + 273.2)^3 / 997.9 + 2.45 \times 2.0627 \times 10^{-8} (329.1 \times 1000)} = 0.52045$$
(S19.122)

$$A_w = \left(\frac{4.19}{1000} \times 997.9 \times \frac{2.0}{1000} + \frac{0.4}{1000} \times 11 - \frac{19.16}{1000} \times 10.8 + 0 - 0 \right) = -0.3115 \text{ mm day}^{-1}$$
(S19.123)
\[
\Delta Q = \left(\frac{4.19}{1000}\right) \frac{997.9}{(1.74\times10^6)^{2.45}} (24.1194\times10^6 \times 11.6 - 25.000 \times 10^6 \times 10.5) \frac{1}{30}
\]
\[
= 0.5651 \text{ mm day}^{-1}
\]

\(E_{Pen}\) for September 1999 at the lake near Melbourne has been computed (separately from this worked example) as 117.2 mm (3.91 mm day\(^{-1}\))

\[
E_{DL} = 3.91 + 0.5204 \left(-0.3115 - \frac{0.5651}{1}\right)
\]
\[
= 3.91 - 0.4562 = 3.45 \text{ mm day}^{-1} = 103.5 \text{ mm evaporation for September 1999.}
\]

Worked example 18: Estimating deep lake evaporation using Vardavas and Fountoulakis model

This worked example is for the same hypothetical deep lake described in Worked Example 17. The exercise is to estimate lake evaporation for September 1999. Vardavas and Fountoulakis (1996, Section 1) adopted a monthly time-step.

\[
E_{DL} = \frac{\Delta}{\Delta + \gamma} E_s + \frac{\gamma}{\Delta + \gamma} E_a \quad \text{(see Equation (S10.7))}
\]
\[
E_s = \frac{1}{\Delta} (R_n + \Delta H_{j-1}) \quad \text{(see Equations (S10.8) and (S10.9))}
\]
\[
\Delta H_{j-1} = -48.6\frac{\Delta T_{wl}}{\tau_m} \quad \text{(see Equation (S10.9))}
\]

From the data in worked example 17:

\[
\Delta H_{j-1} = -48.6 \times 27.0 \left(\frac{11.6-10.5}{30}\right) = -48.114 \text{ W m}^{-2}
\]

Convert this from W m\(^{-2}\) to MJ m\(^{-2}\) day\(^{-1}\) (1 W = 1 J sec\(^{-1}\))

\[
\Delta H_{j-1} = -48.114 \times 0.0864 = -4.1570 \text{ MJ m}^{-2} \text{ day}^{-1}
\]

Assume for September 1999 \(R_n = 9.3469 \text{ MJ m}^{-2} \text{ day}^{-1}\)

\[
E_s = \frac{1}{2.45} (9.3469 + (-4.1570)) = 2.1183 \text{ mm day}^{-1}
\]

\[
E_a = C_a \bar{u} [v_a^*(T_a) - v_a(T_a)] \quad \text{(see Equations (S10.10) and (S10.11))}
\]

noting that the vapour pressure deficit \(v_a^*(T_a) - v_a(T_a)\) is in units of mbar (Vardavas, 1987, page 249).

First we need to estimate \(u_*\) from

\[
\bar{u} = \frac{u_*}{k} \ln \left(\frac{2.0 u_*}{0.135 \bar{u}}\right) \quad \text{(see Equation (S10.16))}
\]

where \(k\) is the von Kármán constant of 0.41

\[
u = 2.964 \times 10^{-7} \frac{n_a^3/2}{p} \quad \text{(see Equation (S10.15))}
\]
\[
u = 2.964 \times 10^{-7} \frac{(13.37+273.2)^{3/2}}{1004.22} = 1.4318 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}
\]

Thus for a wind speed of 3.809 m s\(^{-1}\), Equation (S19.133) is

\[
3.809 = \frac{u_*}{0.41} \ln \left(\frac{2.0 u_*}{0.135 \times 1.4318 \times 10^{-5}}\right)
\]
Using Microsoft Excel Goal Seek, \(u_* = 0.132 \text{ m s}^{-1} \) (S19.137)

\[
C_u = \frac{3966}{T_a \ln \left(\frac{z_o}{z_{om}} \right) \ln \left(\frac{2.0}{1.4318 \times 10^{-5}} \right)} \quad \text{(see Equation (S10.12))} \] (S19.138)

\[z_{om} = 0.135 \frac{u}{u_*} = 0.135 \frac{1.4318 \times 10^{-5}}{0.132} = 1.4643 \times 10^{-5} \] (S19.139)

\[z_{ov} = 0.624 \frac{u}{u_*} = 0.624 \frac{1.4318 \times 10^{-5}}{0.132} = 6.7685 \times 10^{-5} \] (S19.140)

\[
C_u = \frac{3966}{(13.37+273.2) \ln \left(\frac{2.0}{6.7685 \times 10^{-5}} \right) \ln \left(\frac{2.0}{1.4643 \times 10^{-5}} \right)} \] (S19.141)

\[
= 0.1137 \text{ mm day}^{-1}/(\text{m s}^{-1} \text{ mbar})
\]

which is within the range 0.11 to 0.13 mm day\(^{-1}/(\text{m s}^{-1} \text{ mbar})\) estimated for Australian reservoirs as noted by Vardavas (1987, page 264).

Assume for this hypothetical example the vapour pressure deficit = 0.6152 kPa

\[
E_a = C_u u \ln \left[v_a(T_a) - v_a(T_{a1}) \right] = 0.1137 \times 3.809 \times (0.6152 \times 10) \] (S19.142)

where the factor 10 in the last set of brackets converts kPa to mbar

\[
= 2.664 \text{ mm day}^{-1}
\]

\[
E_DL = \left(\frac{0.1000}{0.10008 + 0.0665} \right) 2.1183 + \left(\frac{0.0665}{0.10008 + 0.0665} \right) 2.664 \] (S19.143)

\[
= 2.336 \text{ mm day}^{-1} = 70.1 \text{ mm evaporation for September 1999.}
\]

Worked example 19: Estimating lake evaporation based on the equilibrium temperature by McJannet et al. (2008)

Estimate for a hypothetical lake near Alice Springs, the evaporation for 20 July 1980. The following details are available:

- Average lake area: 5 km\(^2\)
- Average lake depth: 10 m
- Latitude: 23.7951 °S
- Elevation: 546 m
- Lake water temperature for 19 July was 10.8734 °C.

The meteorological data for 20 July 1980 are listed at the beginning of this section. For the purposes of this example, the fraction of cloud cover \((C_f) \) is based on Equation (S3.18)

\[
K_{ratio} = \frac{R_s}{R_{so}} = \frac{17.1940}{17.9716} = 0.9567 \quad \text{and hence} \quad C_f = 2(1 - K_{ratio}) = 0.08654.
\]

Adjust wind speed to equivalent of 10 m height.

\[
u_{10} = u_2 \ln \left(\frac{10}{z_0} \right) \ln \left(\frac{10}{z_0} \right)
\] (S19.144)

where \(z_0 = 0.0002 \text{ m} \) (adopted from Table S2 for open sea)

\[
u_{10} = 0.5903 \ln \left(\frac{10}{0.0002} \right) \ln \left(\frac{10}{0.0002} \right) = 0.6934
\] (S19.145)
Estimate the values of the intermediate variables associated with computing daily evaporation in addition to those in Worked Example 1.

Dew point temperature \((T_d) \)

\[
T_d = \frac{116.9 + 237.3 \ln(v_a)}{16.78 - \ln(v_a)} \quad \text{(see Equation (S2.3))}
\]

From Equation S19.9 \(v_a = 0.5614 \) kPa

\[
T_d = \frac{116.9 + 237.3 \ln(0.5614)}{16.78 - \ln(0.5614)} = -1.1579 \, ^\circ C
\]

Wet-bulb temperature \((T_{wb}) \)

\[
T_{wb} = \frac{0.0066 \times 100T_a + 4098\ln(T_d + 237.3)\ln(T_d + 237.3)}{0.0066 \times 100 + 4098\ln(T_d + 237.3)} \quad \text{(see Equation (S2.2))}
\]

\[
T_{wb} = \frac{0.0066 \times 100 \times 11.5 + 4098 \times 0.5614 \ln(-1.1579 + 237.3)^2 \ln(-1.1579 + 237.3)^2}{0.0066 \times 100 + 4098 \times 0.5614 \ln(-1.1579 + 237.3)^2} = 6.6311 \, ^\circ C
\]

Slope of saturation vapour pressure curve at wet-bulb temperature \((\Delta_{wb}) \)

\[
\Delta_{wb} = \frac{4098 \cdot 0.6108 \exp\left(\frac{17.27T_{wb}}{(T_{wb}+237.3)}\right)}{(T_{wb}+237.3)^2} \quad \text{(see Equation (S2.4))}
\]

\[
\Delta_{wb} = \frac{4098 \cdot 0.6108 \exp\left(\frac{17.27\times 6.6311}{6.6311+237.3}\right)}{(6.6311+237.3)^2} = 0.06727 \, \text{kPa} \, ^\circ C^{-1}
\]

Wind function \((f(u)) \)

\[
f(u) = \left(\frac{5}{A}\right)^{0.05} (3.80 + 1.57u_{10}) \quad \text{(see Equation (S11.24))}
\]

\[
f(u) = \left(\frac{5}{5}\right)^{0.05} (3.80 + 1.57 \times 0.6934) = 4.8887
\]

Aerodynamic resistance \((r_a) \)

\[
r_a = \frac{\rho_{ac}a}{f(u)} \quad \text{(see Equation (S11.23))}
\]

\[
r_a = \frac{1.20 \times 0.001013}{0.0632 \left(\frac{\text{turb}}{36400}\right)} = 339.9 \, \text{s m}^{-1}
\]

The next step is to compute the net radiation. For 20 July 1980, \(R_s \) and \(R_{ns} \) were estimated respectively as 17.1940 MJ m\(^{-2}\) day\(^{-1}\) (Equation (S19.31)) and 15.8184 MJ m\(^{-2}\) day\(^{-1}\) (Equation (S19.35)) noting that albedo for water is 0.08. Incoming longwave radiation is estimated from:

\[
R_{\text{il}} = \left(C_f + (1 - C_f) \left(1 - 0.261 \exp(-7.77 \times 10^{-4}T_a^2)\right)\right) \sigma(T_a + 273.15)^4 \quad \text{(see Equation (S11.26))}
\]

\[
R_{\text{il}} = \left(0.08654 + (1 - 0.08654) \left(1 - 0.261 \exp(-7.77 \times 10^{-4}11.5^2)\right)\right) \times 4.903 \times 10^{-9} (11.5 + 273.15)^4 = 25.2641 \, \text{MJ m}^{-2} \, \text{day}^{-1}
\]
Outgoing longwave radiation as a function of wet-bulb temperature is estimated from:

\[R_{ol}^{wb} = \sigma(T_a + 273.15)^4 + 4\sigma(T_a + 273.15)^3(T_{wb} - T_a) \]
(see Equation (S11.32))

\[R_{ol}^{wb} = 4.903 \times 10^{-9}(11.5 + 273.15)^4 + 4 \times 4.903 \times 10^{-9}(11.5 + 273.15)^3 \]
(6.6311 - 11.5) = 29.9866 MJ m\(^{-2}\) day\(^{-1}\)
(S19.157)

\[Q^*_{wb} = R_s(1 - \alpha) + (R_{il} - R_{ol}^{wb}) \]
(see Equation (S11.31))
(S19.160)

\[Q^*_{wb} = 15.8184 + 25.2641 - 29.9866 = 11.0959 \text{ MJ m}\(^{-2}\) \text{ day}\(^{-1}\) \]
(S19.161)

We now need to calculate the time constant \(\tau \) and the equilibrium temperature \(T_e \).

\[\tau = \frac{\rho_w c_w h_w}{4\sigma(T_{wb} + 273.15)^3 + f(u)(\Delta_{wb} + \gamma)} \]
(see Equation (S11.29))
(S19.162)

\[\tau = \frac{997.9 \times 0.00419 \times 10}{4 \times 4.903 \times 10^{-9}(6.6311 + 273.15)^3 + 4.8887(0.06727 + 0.0632)} = 39.1739 \text{ days} \]
(S19.163)

\[T_e = T_{wb} + \frac{Q^*_{wb}}{4\sigma(T_{wb} + 273.15)^3 + f(u)(\Delta_{wb} + \gamma)} \]
(see Equation (S11.30))
(S19.164)

\[T_e = 6.6311 + \frac{11.0959}{4 \times 4.903 \times 10^{-9}(6.6311 + 273.15)^3 + 4.8887(0.06727 + 0.0632)} = 17.0269 \text{ \degree C} \]
(S19.165)

The next step is to estimate today’s water temperature given yesterday’s water temperature (assume \(T_{w0} = 10.8734 \)).

\[T_w = T_e + (T_{w0} - T_e) \exp \left(-\frac{1}{\tau} \right) \]
(see Equation (S11.28))
(S19.166)

\[T_w = 17.0269 + (10.8734 - 17.0269) \exp \left(-\frac{1}{39.1739} \right) = 11.0285 \text{ \degree C} \]
(S19.167)

As we have an estimate of the water temperature, we can now estimate the change in heat storage \((G_w) \), the slope of the saturation vapour pressure curve at water temperature \((\Delta_w) \), the saturation vapour pressure at water temperature \((v_w^*) \), and the lake evaporation \((E_{McJ}) \).

\[G_w = \rho_w c_w h_w(T_w - T_{w0}) \]
(see Equation (S11.33))
(S19.168)

\[G_w = 997.9 \times 0.00419 \times 10(11.0285 - 10.8734) = 6.4850 \text{ MJ m}\(^{-2}\) \text{ day}\(^{-1}\) \]
(S19.169)

\[\Delta_w = \frac{4098[0.6108 \exp\left(\frac{17.27T_w}{T_w + 237.3}\right)]}{(T_w + 237.3)^2} \]
(see Equation (S2.4))
(S19.170)

\[\Delta_w = \frac{4098[0.6108 \exp\left(\frac{17.27 - 11.0285}{11.0285 + 237.3}\right)]}{(11.0285 + 237.3)^2} = 0.08740 \text{ kPa \degree C}^{-1} \]
(S19.171)

\[v_w^* = 0.6108 \exp\left[\frac{17.27 T_w}{T_w + 237.3}\right] \]
(see Equation (S2.5))
(S19.170)

\[v_w^* = 0.6108 \exp\left[\frac{17.27 \times 11.0285}{11.0285 + 237.3}\right] = 1.3152 \text{ kPa} \]
(S19.173)

The penultimate step is to recompute the net radiation given the water temperature.

\[R_{ns} \text{ and } R_{lt} \text{ will not change as they are essentially unaffected by the surface temperature. However, the outgoing longwave radiation } (R_{ol}) \text{ is a function of water temperature which is now known.} \]

\[R_{ol} = 0.97 \sigma(T_w + 273.15)^4 \]
(see Equation (S11.27))
(S19.174)
\[R_{ol} = 0.97 \times 4.903 \times 10^{-9} (11.0285 + 273.15)^4 = 31.0169 \text{ MJ m}^{-2} \text{ day}^{-1} \quad (S19.175) \]

Thus,

\[Q^* = R_s(1 - \alpha) + (R_{il} - R_{ol}) \text{ (see Equation (S11.25))} \quad (S19.176) \]

\[Q^* = 15.8184 + (25.2641 - 31.0169) = 10.0656 \text{ MJ m}^{-2} \text{ day}^{-1} \]

\[E_{McJ} = \frac{1}{\lambda} \left(\frac{\Delta_w (Q^* - G_w) + 86400 \rho_a c_a (v_{w}^* - v_{a})}{\Delta_w + \gamma \rho_a} \right) \text{ (see Equation (S11.22))} \quad (S19.177) \]

\[E_{McJ} = \frac{1}{2.45} \left(\frac{0.087340(10.0656 - 6.4850) + 86400 \times 1.2 \times 0.001013(1.3152 - 0.5614)}{0.08732 + 0.0632} \right) \quad (S19.178) \]

\[E_{McJ} = 1.4796 \text{ mm day}^{-1} \quad (S19.179) \]
Supplementary Material

Section S20 Listing of Fortran 90 version of Morton’s WREVAP program

The following program listing called Program WREVAP, which is a slightly modified version of Morton’s WREVAP model, is written in Fortran 90 and follows closely the steps set out in Appendix C of Morton (1983a). The deep lake sub-routine is based on Morton (1986, Section 3).

The program uses a monthly time-step and requires the following input data: for each month, average daily temperature (°C), average daily relative humidity (%), and average daily sunshine hours. Other data required as input are mean annual precipitation (mm), latitude (decimal degree and negative for the southern hemisphere), and elevation of the station (m). For deep lake evaporation, lake salinity (ppm) and average lake depth (m) are also required. The outputs from the CRAE sub-model are monthly net solar radiation (mm), monthly potential evapotranspiration (mm), monthly wet areal evapotranspiration (mm) and monthly actual areal evapotranspiration (mm); from the CRWE sub-model are net radiation at the water surface, potential evaporation and actual shallow lake evaporation; and from CWLE sub-model are net radiation at the water surface, potential evaporation and actual deep lake evaporation.

Structure of Program WREVAP

Program WREVAP calculates the actual evapotranspiration from a landscape (catchment) environment, evaporation from a shallow lake and evaporation from a deep lake based on Morton’s (1983a,b; 1986) WREVAP program. The program WREVAP is a slightly modified version of Morton’s WREVAP and consists of one module (WREVAP data) and five subroutines (crae, crwe, crle1, crle2 and sub1). crae, crwe and crle represent Morton’s three program CRAE, CRWE and CRLE. Two versions of CRLE are include: crle1 calculates lake evaporation assuming the water depth in the lake is constant, and crle2 calculates lake evaporation assuming the water depth in the lake varies on a monthly basis.

The structure of Program WREVAP is shown in the figure below where:

- **WREVAP data**: Variable declarations and constants
- **crae**: Calculates the actual evapotranspiration from landscape
- **crwe**: Calculates evaporation from shallow lake
- **crle1**: Calculates evaporation from deep lake (constant depth)
- **crle2**: Calculates evaporation from deep lake (variable depth)
- **sub1**: Calculates the solar radiation
Input data: latitude (degrees), station height (m), mean annual precipitation (mm year$^{-1}$), number of months, monthly temperature ($^\circ$C), relative humidity (%), sunshine hours (h), lake depth (m), salinity (ppm).

The input data is supplied to the program via two files: a parameter file and a data file.

Parameter file: WREVAP.par

*Example:

Melbourne.dat File containing the climate and other data
Melbourne.out Output file
1 Flag 1 – evapotranspiration from landscape
2 – evaporation from shallow lake
3 – evaporation from deep lake (constant depth)
4 – evaporation from deep lake (variable depth)

Data file:

Record
1 Station header
2 Latitude, station height, mean annual rainfall and number of months
3 Data header
4 year, month, number of days, temperature, relative humidity and sunshine hours
 “ “ “ “
 “ “ “ “

*Example: Melbourne.dat (for crae and crwe)

86282 86 MELBOURNE AIRPORT
-37.666 113.4 660 201
Year Month Day Temperature RH SH
1993 5 31 12.54 72.58 8.88
1993 6 30 10.12 76.73 7.08
1993 7 31 9.90 75.74 10.03
1993 8 31 11.62 69.44 -9999
1993 9 30 12.16 70.58 11.20
1993 10 31 13.16 71.00 10.95
1993 11 30 15.15 69.64 9.53
1993 12 31 16.80 68.94 9.53

*Example: ThomsonReservoir.dat (for crle1)

Thomson Reservoir
-37.752 415.0 1090 36 22.95 23
Year Month Day Temperature RH SH
2007 3 31 16.59 69.96 8.02
2007 4 30 13.45 74.71 7.31
2007 5 31 12.56 73.88 5.20
2007 6 30 6.94 85.04 3.91
2007 7 31 6.98 79.93 4.45
2007 8 31 9.33 72.12 6.58
2007 9 30 9.77 69.64 7.03
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Temperature</th>
<th>RH</th>
<th>SH</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>10</td>
<td>31</td>
<td>12.77</td>
<td>64.85</td>
<td>7.86</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>30</td>
<td>15.43</td>
<td>75.45</td>
<td>8.42</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>31</td>
<td>17.28</td>
<td>69.95</td>
<td>8.43</td>
<td></td>
</tr>
</tbody>
</table>

Example: ThomsonReservoirVD.dat (for crle2)

Thomson Reservoir

-37.752 415.0 1090 36 23

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Temperature</th>
<th>RH</th>
<th>SH</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>3</td>
<td>31</td>
<td>16.59</td>
<td>69.96</td>
<td>8.02</td>
<td>22.52</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>30</td>
<td>13.45</td>
<td>74.71</td>
<td>7.31</td>
<td>21.99</td>
</tr>
<tr>
<td>2007</td>
<td>5</td>
<td>31</td>
<td>12.56</td>
<td>73.88</td>
<td>5.20</td>
<td>21.69</td>
</tr>
<tr>
<td>2007</td>
<td>6</td>
<td>30</td>
<td>6.94</td>
<td>85.04</td>
<td>3.91</td>
<td>21.79</td>
</tr>
<tr>
<td>2007</td>
<td>7</td>
<td>31</td>
<td>6.98</td>
<td>79.93</td>
<td>4.45</td>
<td>23.39</td>
</tr>
<tr>
<td>2007</td>
<td>8</td>
<td>31</td>
<td>9.33</td>
<td>72.12</td>
<td>6.58</td>
<td>24.26</td>
</tr>
<tr>
<td>2007</td>
<td>9</td>
<td>30</td>
<td>9.77</td>
<td>69.64</td>
<td>7.03</td>
<td>24.86</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
<td>31</td>
<td>12.77</td>
<td>64.85</td>
<td>7.86</td>
<td>25.26</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>30</td>
<td>15.43</td>
<td>75.45</td>
<td>8.42</td>
<td>25.52</td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>31</td>
<td>17.28</td>
<td>69.95</td>
<td>8.43</td>
<td>25.62</td>
</tr>
</tbody>
</table>
Program WREVAP (Fortran 90)

Lines designated as !C-1 to !C-39 identify the equivalent equations in Morton (1983a, Appendix C) and those designated as ! (3) to ! (8) are from Morton (1986). A list of variables is provided at the end of the program.

A web-site for the Fortran listing of Morton’s WREVAP program is available at http://people.eng.unimelb.edu.au/mpeel/morton.html. On this site corrections to the code will be listed, updated versions of WREVAP code provided and .exe files will be available.

Module WREVAPdata
implicit none
save
character(len=80) :: fn
integer :: year, month, nd, ios, j, im, nm, nn(12)
real :: phid, h, p, pa, pps, azd, td, t, s, v, vd, delta, & theta, tc, c0, cl, c2, w, phi, rh
real :: alpha(2) = (/17.27, 21.88/), beta(2) = (/237.3, 265.5/),& pi = 3.14159254, gamma(2), ftz(2), fz(2), az, azz, cz, & cosz, comega, eta, ge, z, tmp, a0, g0, b, rt, rtc, & zeta, ft, lambda, et, etp, tau, rho, delp, delt, vp, & tp, es, d, salt, omega, taua, g, a, b0, rtp, etw, b1, & b2, ltheat, xm(4,12), gdew, rw, ep, ew
end Module WREVAPdata

program WREVAP
! Calculates Morton's ET
! 05 April 2012
use WREVAPdata
implicit none
integer :: flag
open (10, file = 'WREVAP.par', status = 'old')
read (10, 100) fn; 100 format(a)
open (11, file = fn, status = 'old')
! Input data file
read (10, *) flag
if (flag == 1) then
 b0 = 1.; b1 = 14.; b2 = 1.20; fz(1) = 28. !Morton's values
 b0 = 1.; b1 = 13.4; b2 = 1.13; fz(1) = 29.2 ! QJ's values
 es = 5.22e-8
 write (21, '("fz, b1, and b2", 3f8.2)'), fz(1), b1, b2
 read (11, *) phid, h, pa, nm
 write (21, 200) phid, h, pa, nm
 200 format('Latitude =', f7.2, ' Station height =', f8.2, & 'm Mean annual precipitation =', f8.1, ' mm'/ & '# of months =', i5)
 write (21, 201)
 201 format('Year Month Temp Rel Hum Sunshine' & & 'Net Rad PET WET AET ft'/ &
else
 b0 = 1.12
 b1 = 13.
 b2 = 1.12
 es = 5.5e-8
 fz(1) = 25.
 if (flag == 2) then
 read (11, *) phid, h, pa, nm
 write (21, 200) phid, h, pa, nm
 else if (flag == 3) then
 read (11, *) phid, h, pa, nm, d, salt
 write (21, 202) phid, h, pa, d, salt, nm
 202 format('Latitude =', f7.2, ' Station height =', &
 f8.2, ' m', ' Mean annual precipitation =', &
 f8.1, ' mm'/ ' Lake depth =', f7.2, ' m', &
 ' Salt =', f8.1, ' ppm', ' # of months =', i5)
 else if (flag == 4) then
 read (11, *) phid, h, pa, nm, salt
 write (21, 203) phid, h, pa, salt, nm
 203 format('Latitude =', f7.2, ' Station height =', &
 f8.2, ' m', ' Mean annual precipitation =', &
 f8.1, ' mm'/ ' Salt =', f8.1, ' ppm', &
 ' # of months =', i5)
 end if
end if
read (11, *)
! Skip a line
phi = phid*pi/180.
! Compute the ratio of atmospheric pressure at the station to that
! at sea level
pps = ((288. - 0.0065*h)/288)**5.256 !C-1
p = pps*1013.
! Estimate the zenith value of the dry season snow free clear sky
! albedo
azd = 0.26 - 0.00012*pa*(1 + abs(phid/42) + &
 (phid/42)**2)*pps**0.5 !C-2
if (azd < 0.11) azd = 0.11
if (azd > 0.17) azd = 0.17
gamma(1) = 0.66*pps
gamma(2) = gamma(1)/1.15
fz(2) = fz(1)*1.15
ftz(1) = fz(1)*sqrt(1./pps)
ftz(2) = ftz(1)*1.15
nn = 0 ; xm = 0.
if (flag == 1) then
 call crae(1)
else if (flag == 2) then
 write (21, 204)
 204 format('Year Month Temp Rel Hum Sunshine ', &
 'Net Rad PET AET'/ &
 '(oC) (%) (Ratio) (mm)' &
 '(mm) (mm)')
call crwe(2)
else if (flag == 3) then
 write (21, 204)
call crle1(3)
else if (flag == 4) then
 write (21, 205)
 205 format(' Year Month Temp Rel Hum Sunshine', &
 ' Depth Net Rad PET AET', &
 ' (oC) (%) (Ratio)', &
 ' (m) (mm) (mm) (mm)'), &
call crle2(4)
end if
end program WREVAP

subroutine crae(flag)
! Calculates the actual evapotranspiration from landscape
use WREVAPdata
! implicit none
integer :: flag
! do im = 1, nm
read (11, *, iostat = ios) year, month, nd, t, rh, s
if (ios < 0) exit
if (s < 0. .OR. rh < 0. .OR. t < -999.) cycle
call subl(flag)
!
! Estimate the net radiation for soil-plant surfaces at air
! temperature (rt), the stability factor (sf), the vapour
! pressure coefficient (ft) and the heat transfer
! coefficient (lambda)
rt = (1. - a)*g - b !C-27
rtc = rt !C-28
if (rtc < 0.) rtc = 0. !C-28a
zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/ &
 (gamma(j)*b0*fz(j)*(v - vd))) !C-29
if (zeta < 1.) zeta = 1. !C-29a
ft = fz(j)/zeta/pps**0.5 !C-30
lambda = gamma(j) + 4.*es*(t + 273)**3/ft !C-31
!
! Estimate the final values from the following quickly
! converging iterative solution of the vapour transfer
! and energy balance equations
tp = t
vp = v
delp = delta
do
 delt = (rt/ft + vd - vp +lambda*(t - tp))/ &
 (delp + lambda) !C-32
 tp = tp + delt !C-33
 vp = 6.11*exp(alpha(j)*tp/(tp + beta(j))) !C-34
 delp = alpha(j)*beta(j)*vp/(tp + beta(j))*2 !C-35
 if (abs(delt) < 0.01) exit
end do
!
! Estimate the potential evapotranspiration (etp), the net
! radiation for soil-plant surfaces at equilibrium temperature
! (rtp) and the wet-environment areal evapotranspiration (etw)
etp = rt - lambda*ft*(tp - t) !C-36
rtp = etp + gamma(j)*ft*(tp - t) !C-37
etw = b1 + b2*rtp/(1. + gamma(j)/delp) !C-38
if (etw < etp/2.) etw = etp/2. !C-38a
if (etw > etp) etw = etp !C-38a
! Estimate the areal evapotranspiration (et) from the
! complementary relationship
et = 2.*etw - etp !C-39
ltheat = 28.5
if (t < 0.) ltheat = 28.5*1.15
et = nd*et/ltheat
rt = nd*rt/ltheat
etp = nd*etp/ltheat
etw = nd*etw/ltheat
write (21, 201) year, month, t, rh, s, rt, etp, etw, et, ft
201 format(i5, i3, 8f10.2)
xm(1,month) = xm(1,month) + rt
xm(2,month) = xm(2,month) + etp
xm(3,month) = xm(3,month) + etw
xm(4,month) = xm(4,month) + et
nn(month) = nn(month) + 1
end do
write (21, 202)
202 format(/10x,'Mean Values'/ 'Month Net Rad PET' &
 ' WET AET # of months')
do month = 1, 12
 xm(:,month) = xm(:,month)/nn(month)
 write (21, 203) month, (xm(j,month), j = 1, 4), nn(month)
203 format(i5, 4f10.2, i5)
end do
write (21, 204) (sum(xm(j,:)), j = 1, 4)
204 format('Annual', f9.1, 3f10.2)
end subroutine crae

subroutine sub1(flag)
use WREVAPdata
implicit none
integer :: flag
if (t < 0.) then
 j = 2
else
 j = 1
end if
! Compute the saturation vapour pressure at td (vd), at t (v) and
! the slope of the saturation vapour pressure at t (delta)
v = 6.11*exp(alpha(j)*t/(t + beta(j))) !C-4
! Calculate dew point temperature from relative humidity
! (Lawrence 2005)
gdew = 17.625*t/(243.04 + t) + log(rh/100.)
td = 243.04*gdew/(17.625 - gdew)
v = 6.11*exp(17.27*td/(td + 237.3))
! Compute various angles and functions leading up to an estimate
! of the extra-atmospheric global radiation (ge)
theta = 23.2*sin((29.5*month - 94.)*pi/180.)*pi/180. !C-6
z = phi - theta
cosz = cos(z) !C-7
if (cosz < 0.001) cosz = 0.001 !C-7a
if (cosz > 1.) cosz = 1.
z = acos(cosz)
comega = 1. - cosz/cos(phi)/cos(theta) !C-8
if (comega < -1.) comega = -1. !C-8a
omega = acos(comega)

cz = cosz + (sin(omega)/omega - 1.)*cos(phi)*cos(theta) !C-9
eta = 1. + sin((29.5*month - 106)*pi/180.)/60. !C-10
ge = 1354*omega*cz/pi/eta/eta !C-11
!
! Estimate the zenith value of snow-free clear-sky albedo (azz),
! zenith value of clear-sky albedo (az) and the clear sky
! albedo (a0)
if (flag > 1) then
 azz = 0.05
else
 azz = azd !C-12
 if (azz > 0.5*(0.91 - vd/v)) azz = 0.5*(0.91 - vd/v) !C-12a
end if
c0 = v - vd !C-13
if (c0 < 0.) c0 = 0. !C-13a
if (c0 > 1.) c0 = 1. !C-13a
az = azz + (1. - c0*c0)*(0.34 - azz) !C-14
a0 = az*exp(1.08) - (2.16*cosz/pi + &
 sin(z))*exp(0.012*z*180./pi))/1.473/(1. - sin(z)) !C-15
!
! Estimate precipitable water (w) and a turbidity coefficient (tc)
w = vd/(0.49 + t/129.) !C-16
c1 = 21 - t !C-17
if (c1 < 0.) c1 = 0. !C-17a
if (c1 > 5.) c1 = 5. !C-17a
tc = (0.5 + 2.5*cz*cz)*exp(c1*(pps - 1.)) !C-18
!
! Compute the transmittancy of clear skies to direct beam
! solar radiation (tau)
tau = exp(-0.089*(pps/cz)**0.75 - 0.083*(tc/cz)**0.90 - &
 0.029*(w/cz)**0.60) !C-19
!
! Estimate the part of tau that is the result of absorption (taua)
taua = exp(-0.0415*(tc/cz)**0.90 - (0.0029**0.5) * &
 (w/cz)**0.3) !C-20
tmp = exp(-0.0415*(tc/cz)**0.90 - 0.029*(w/cz)**0.6)
if (taua < tmp) taua = tmp !C-20a
!
! Compute the clear-sky global radiation (g0) and the incident
! global radiation (g)
g0 = ge*taua*(1. + (1. - tau/taua)*(1. + a0*taua)) !C-21
s = s*pi/24./omega
if (s > 1.) s = 0.999
ge = s*g0 + (0.08 + 0.30*s)*(1. - s)*ge !C-22
!
! Estimate the average albedo (a)
a = a0*(s + (1. - s)*(1. - z*180/pi/330)) !C-23
!
! Estimate the proportional increase in atmospheric radiation
! due to clouds (rho)
c2 = 10.*(vd/v - s - 0.42) !C-24
if (c2 < 0.) c2 = 0. !C-24a
if (c2 > 1.) c2 = 1. !C-24a
rho = 0.18*(1. - c2)*(1. - s)**2 + c2*(1. - s)**0.5)/pps !C-25
!
! Calculate the net long-wave radiation loss for soil-plant
! surface at air temperature (b)
\[b = es^*(t + 273)^{**4}*(1. - (0.71 + 0.007*vd*pps)*(1. + rho))!C-26 \]
\[\text{tmp} = 0.05*es^*(t + 273)^{**4} \]
\[\text{if} \ (b < \text{tmp}) \ b = \text{tmp} \] !C-26a

end subroutine sub1

subroutine crwe(flag)
! Calculates Morton's ET - Shallow lake evaporation
! 05 April 2012
use WREVAPdata
implicit none
integer :: flag

do im = 1, nm
read (11, *, iostat = ios) year, month, nd, t, rh, s
if (ios < 0) exit
if (s < 0 .OR. rh < 0 .OR. t < -999.) cycle
call sub1(flag)
! Estimate the net radiation for water surface at air
temperature (rw),
! the stability factor (sf), the vapour pressure
! coefficient (ft) and the heat transfer coefficient (lambda)
rw = (1. - a)*g - b
rtc = rw
if (rtc < 0.) rtc = 0.
zeta = 1./((0.28*(1. + vd/v) + delta*rtc*pps**0.5/ (gamma(j)*b0*fz(j)*(v - vd))))
if (zeta < 1.) zeta = 1.
ft = fz(j)/zeta/pps**0.5
lambda = gamma(j) + 4.*es*(t + 273)**3/ft
! Estimate the final values from the following quickly
! converging iterative solution of the vapour transfer
! and energy balance equations
tp = t
vp = v
delp = delta
do
 delt = (rw/ft + vd - vp +lambda*(t - tp))/(delp + lambda)
 tp = tp + delt
 vp = 6.11*exp(alpha(j)*tp/(tp + beta(j))))
 delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2
 if (abs(delt) < 0.01) exit
end do
! Estimate the potential evaporation (ep), the net radiation
! for soil-plant surfaces at equilibrium temperature (rtp)
! and the shallow lake evaporation (ew)
ep = rw - lambda*ft*(tp - t)
rtp = ep + gamma(j)*ft*(tp - t)
ew = b1 + b2*rtp/(1. + gamma(j)/delp)
if (ew < ep/2.) ew = ep/2.
if (ew > ep) ew = ep
ltheat = 28.5
if (t < 0.) ltheat = 28.5*1.15
ep = nd*ep/ltheat
rw = nd*rw/ltheat
ew = nd*ew/ltheat
end subroutine crwe
write (21, 201) year, month, t, rh, s, rw, ep, ew
201 format(i5, i3, 6f10.2)
xm(1,month) = xm(1,month) + rw
xm(2,month) = xm(2,month) + ep
xm(3,month) = xm(3,month) + ew
nn(month) = nn(month) + 1
end do
write (21, *) ' Mean values'
write (21, *) 'Month Net Rad PET AET'
do month = 1, 12
 xm(:,month) = xm(:,month)/nn(month)
 write (21, 203) month, (xm(j,month), j = 1, 3)
203 format(i5, 4f10.2)
end do
write (21, 204) (sum(xm(j,:)), j = 1, 3)
204 format('Annual', f9.1, 3f10.2)
end subroutine crwe

subroutine crle1(flag)
! Calculates Morton's ET - Deep lake evaporation
! 05 April 2012
use WREVAPdata
implicit none
integer, parameter :: nmx = 360
integer :: ic, iy(nmx), mon(nmx), tnd(nmx), flag
real :: tgw(nmx), tv(nmx), tvd(nmx), ts(nmx), gl(nmx), &
 tt(nmx), trh(nmx), tdelta(nmx)
do im = 1, nm
 read (11, *, iostat = ios) year, month, nd, t, rh, s
 if (ios < 0) exit
 if (s < 0. .OR. rh < 0. .OR. t < -999.) cycle
 call sub1(flag)
tgw(im+12) = (1. - a)*g - b
 tt(im) = t
 trh(im) = rh
 ts(im) = s
 tv(im) = v
 tvd(im) = vd
 tdelta(im) = delta
 iy(im) = year
 tnd(im) = nd
 mon(im) = month
end do
call deepLake(nmx, nm, tgw, gl, d, salt)
do im = 1, nm
 t = tt(im)
 rh = trh(im)
 s = ts(im)
 v = tv(im)
 vd = tvd(im)
 delta = tdelta(im)
 ! Estimate the net radiation for water surface at air
 ! temperature (rw),
 ! the stability factor (sf), the vapour pressure coefficient
 ! (ft) and the heat transfer coefficient (lambda)
\begin{verbatim}
rw = gl(im)
rtc = rw
if (rtc < 0.) rtc = 0.
zeta = 1. / (0.28*(1. + vd/v) + delta*rtc*pps**0.5) &
 (gamma(j)*b0*fz(j)*(v - vd)))
 !C-29
if (zeta < 1.) zeta = 1. !C-29a
ft = fz(j)/zeta/pps**0.5 !C-30
lambda = gamma(j) + 4.*es*(t + 273)**3/ft !C-31
!
Estimate the final values from the following quickly
converging iterative solution of the vapour transfer
and energy balance equations

\begin{verbatim}
 tp = t
 vp = v
delp = delta
ic = 0
do
 delt = (rw/ft + vd - vp +lambda*(t - tp))/ (delp + lambda) !C-32
 tp = tp + delt !C-33
 vp = 6.11*exp(alpha(j)*tp/(tp + beta(j))) !C-34
 delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2 !C-35
if (abs(delt) < 0.01) exit
ic = ic + 1
if (ic > 100) then
 print *, 'Did not converge for month', im
 exit
end if
end do
!
Estimate the potential evaporation (ep), the net radiation
for soil-plant surfaces at equilibrium temperature (rtp) and
the deep lake evaporation (ew)

\begin{verbatim}
 ep = rw - lambda*ft*(tp - t)
 rtp = ep + gamma(j)*ft*(tp - t)
 ew = b1 + b2*rtp/(1. + gamma(j)/delp)
if (ew < ep/2.) ew = ep/2.
if (ew > ep) ew = ep
ltheat = 28.5
if (t < 0.) ltheat = 28.5*1.15
nd = tnd(im)
ep = nd*ep/ltheat
rw = nd*rw/ltheat
ew = nd*ew/ltheat
write (21, 201) iy(im), mon(im), t, rh, s, rw, ep, ew
201 format(i5, i3, 6f10.2)
xm(1,mon(im)) = xm(1,mon(im)) + rw
xm(2,mon(im)) = xm(2,mon(im)) + ep
xm(3,mon(im)) = xm(3,mon(im)) + ew
nn(mon(im)) = nn(mon(im)) + 1
end do
write (21, *) ' Mean values'
write (21, *) 'Month Net Rad PET AET'
do month = 1, 12
 xm(:,month) = xm(:,month)/nn(month)
write (21, 203) month, (xm(j,month), j = 1, 3)
203 format(i5, 4f10.2)
\end{verbatim}
\end{verbatim}
end do
write (21, 204) (sum(xm(j,:)), j = 1, 3)
204 format('Annual', f9.1, 3f10.2)
end subroutine crle1

subroutine deepLake(nmx, nm, tgw, gl, d, salt)
!
Calculates the available solar and waterborne heat(gl) using
!
Morton 1986
!
implicit none

integer :: im, nmx, nm, ti, t1, i, i1, ii
real :: gw(nmx), tgw(nmx), gl(nmx), t0, t, glb, gle, &
salt, d, f, k
!
(6)
t0 = 0.96 + 0.013*d
if (t0 < 0.039*d) t0 = 0.039*d
if (t0 > 0.13*d) t0 = 0.13*d
!
(7)
t = t0/(1. + salt/27000)**2
if (t > 6.) t = 6.
!
(8)
k = t0/(1. + (d/93)**7)

Calculates the available solar and waterborne heat(gl)

!
(9)
tig = int(t)
t1 = ti + 1
f = t - ti
!
(10)
i = 12
!
(11)
tgw(1:12) = tgw(13:24)
!
(12)
do im = 1, nm
!
(13)
i = i + 1
i1 = i - t1
ii = i - ti
gw(im) = tgw(ii) + f*(tgw(i1) - tgw(ii))
!
end do
!
(14)
Calculates the available solar and waterborne heat(gl)

!
(15)

glb = 50.
doi = 1, 2
!
(16)
do im = 1, 12
!
(17)
 gle = glb + (gw(im) - glb)/(k + 0.5)
!
(18)
 gl(im) = (glb + gle)/2.
!
end do
!
(19)
do im = 1, nm
!
(20)
 gle = glb + (gw(im) - glb)/(k + 0.5)
!
(21)
 gl(im) = (glb + gle)/2.
!
end do
!
end subroutine deepLake

subroutine crle2(flag)
!
Calculates Morton's ET - Deep lake evaporation
!
05 April 2012
!
use WREVAPdata
!
implicit none
!
integer, parameter :: nmx = 360
!
integer :: ic, iy(nmx), mon(nmx), tnd(nmx), flag
!
real :: tgw(nmx), tv(nmx), tvd(nmx), ts(nmx), gl(nmx), &

tt(nmx), trh(nmx), tdelta(nmx), da(nmx)
do im = 1, nm
 read (11, *, iostat = ios) year, month, nd, t, rh, s, da(im)
 if (ios < 0) exit
 if (s < 0. .OR. td < 0. .OR. t < -999.) cycle
 call sub1(flag)
 tgw(im+12) = (1. - a)*g - b
 tt(im) = t
 trh(im) = rh
 ts(im) = s
 tv(im) = v
 tvd(im) = vd
 tdelta(im) = delta
 iy(im) = year
 mon(im) = month
 tnd(im) = nd
end do
call deepLakeVD(nmx, nm, tgw, gl, da, salt)

! Estimate the net radiation for water surface at air temperature (rw), ! the stability factor (sf), the vapour pressure coefficient ! (ft) and the heat transfer coefficient (lambda)
rw = gl(im)
rtc = rw
if (rtc < 0.) rtc = 0.
zeta = 1./(0.28*(1. + vd/v) + delta*rtc*pps**0.5/ &
 (gamma(j)*b0*fz(j)*(v - vd))) !C-29
if (zeta < 1.) zeta = 1. !C-29a
ft = fz(j)/zeta/pps**0.5 !C-30
lambda = gamma(j) + 4.*es*(t + 273)**3/ft !C-31

! Estimate the final values from the following quickly converging iterative solution of the vapour transfer and ! energy balance equations
tp = t
vp = v
delp = delta
ic = 0
do
delt = (rw/ft + vd - vp +lambda*(t - tp))/(delp + lambda) !C-32
 tp = tp + delt !C-33
 vp = 6.11*exp(alpha(j)*tp/(tp + beta(j))) !C-34
 delp = alpha(j)*beta(j)*vp/(tp + beta(j))**2 **2 !C-35
 if (abs(delt) < 0.01) exit
 ic = ic + 1
 if (ic > 100) then
 print *, 'Did not converge for month', im
 exit
 end if
end do

! Estimate the potential evaporation (ep), the net radiation
! for soil-plant
! surfaces at equilibrium temperature (rtp) and the deep lake
! evaporation (ew)
!
ep = rw - lambda*ft*(tp - t)
rt = ep + gamma(j)*ft*(tp - t)
ew = b1 + b2*rtp/(1. + gamma(j)/delp)
if (ew < ep/2.) ew = ep/2.
if (ew > ep) ew = ep
ltheat = 28.5
if (t < 0.) ltheat = 28.5*1.15
nd = tnd(im)
ep = nd*ep/ltheat
rw = nd*rw/ltheat
ew = nd*ew/ltheat
!
write (21, 201) iy(im), mon(im), t, rh, s, da(im), rw, ep, ew
201 format(i5, i3, 7f10.2)
xm(1,mon(im)) = xm(1,mon(im)) + rw
x(2,mon(im)) = xm(2,mon(im)) + ep
x(3,mon(im)) = xm(3,mon(im)) + ew
nn(mon(im)) = nn(mon(im)) + 1
!
end do
!
write (21, *) ' Mean values'
write (21, *) 'Month Net Rad PET AET'
do month = 1, 12
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
\[t_{l1} = t_i + 1 \]
\[f = t - t_i \]
\[i = i + 1 \]
\[i_{l1} = i - t_{l1} \]
\[i_{ii} = i - t_i \]
\[gw(i_{m}) = tgw(i_{ii}) + f \ast (tgw(i_{l1}) - tgw(i_{ii})) \quad !(3) \]

end do

! Calculates the available solar and waterborne heat (gl)
\[gl_{b} = 50. \]

do i = 1, 2
 do im = 1, 12
 gle = gl_{b} + (gw(im) - gl_{b})/(k + 0.5) \quad !(4)
 gl(im) = (gl_{b} + gle)/2. \quad !(5)
 gl_{b} = gle
 end do
end do

end subroutine deepLakeVD
Key variables used in Program WREVAP

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>average albedo</td>
</tr>
<tr>
<td>a0</td>
<td>clear-sky albedo</td>
</tr>
<tr>
<td>alpha</td>
<td>constant used in estimating vapour pressure - changes at 0°C</td>
</tr>
<tr>
<td>az</td>
<td>zenith value of clear-sky albedo</td>
</tr>
<tr>
<td>azd</td>
<td>zenith value of the dry season snow free clear sky albedo</td>
</tr>
<tr>
<td>azz</td>
<td>zenith value of snow-free clear-sky albedo</td>
</tr>
<tr>
<td>b</td>
<td>net longwave radiation loss for soil-plant surface at air temperature</td>
</tr>
<tr>
<td>beta</td>
<td>constant used in estimating vapour pressure - changes at 0°C</td>
</tr>
<tr>
<td>cosz</td>
<td>cosine of the noon angular zenith distance of the sun</td>
</tr>
<tr>
<td>cz</td>
<td>cosine of the average angular zenith distance of the sun</td>
</tr>
<tr>
<td>delt</td>
<td>correction to tp in iteration process</td>
</tr>
<tr>
<td>delta</td>
<td>slope of the saturation vapour pressure at t</td>
</tr>
<tr>
<td>es</td>
<td>surface emissivity times the Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>et</td>
<td>areal evapotranspiration</td>
</tr>
<tr>
<td>eta</td>
<td>radius vector of the sun</td>
</tr>
<tr>
<td>etp</td>
<td>potential evapotranspiration</td>
</tr>
<tr>
<td>etw</td>
<td>wet-environment areal evapotranspiration</td>
</tr>
<tr>
<td>ft</td>
<td>vapour pressure coefficient</td>
</tr>
<tr>
<td>g</td>
<td>incident global radiation</td>
</tr>
<tr>
<td>g0</td>
<td>clear-sky global radiation</td>
</tr>
<tr>
<td>gamma</td>
<td>psychrometric constant - changes at 0°C</td>
</tr>
<tr>
<td>ge</td>
<td>extra-atmospheric global radiation in Wm⁻²</td>
</tr>
<tr>
<td>gl</td>
<td>available solar and waterborne heat</td>
</tr>
<tr>
<td>glb</td>
<td>value of gl at the beginning</td>
</tr>
<tr>
<td>gle</td>
<td>value of gl at the end</td>
</tr>
<tr>
<td>gw</td>
<td>delayed solar and waterborne heat</td>
</tr>
<tr>
<td>h</td>
<td>station height</td>
</tr>
<tr>
<td>iy</td>
<td>array to store year</td>
</tr>
<tr>
<td>k</td>
<td>storage constant</td>
</tr>
<tr>
<td>lambda</td>
<td>heat transfer coefficient</td>
</tr>
<tr>
<td>lheat</td>
<td>latent heat of vaporisation water</td>
</tr>
<tr>
<td>mon</td>
<td>array to store month</td>
</tr>
<tr>
<td>nd</td>
<td>number of days in a month</td>
</tr>
<tr>
<td>nm</td>
<td>number of months</td>
</tr>
<tr>
<td>omega</td>
<td>angle in radians the earth rotates between sunrise and noon</td>
</tr>
<tr>
<td>p</td>
<td>atmospheric pressure</td>
</tr>
<tr>
<td>pa</td>
<td>mean annual rainfall</td>
</tr>
<tr>
<td>phi</td>
<td>latitude in radians</td>
</tr>
<tr>
<td>phid</td>
<td>latitude in degrees</td>
</tr>
<tr>
<td>pps</td>
<td>ratio of atmospheric pressure at the station to that at sea level</td>
</tr>
<tr>
<td>rho</td>
<td>proportional increase in atmospheric radiation due to clouds</td>
</tr>
<tr>
<td>rt</td>
<td>net radiation for soil-plant surfaces at air temperature</td>
</tr>
<tr>
<td>rtp</td>
<td>net radiation for soil-plant surfaces at equilibrium temperature</td>
</tr>
<tr>
<td>rw</td>
<td>net radiation for water surface at air temperature</td>
</tr>
<tr>
<td>s</td>
<td>ratio of observed to maximum possible sunshine duration</td>
</tr>
<tr>
<td>sf</td>
<td>the stability factor</td>
</tr>
</tbody>
</table>
t average air temperature

\(t \) lake delay time in months

\(\tau \) transmittance of clear skies to direct beam soar radiation

\(\tau_a \) part of \(\tau \) that is the result of absorption

\(t_c \) turbidity coefficient

\(t_d \) average dew point temperature

\(t_{\text{delta}} \) array to store delta

\(\theta \) declination of sun

\(t_{\text{nd}} \) array to store nd

\(t_{\text{o}} \) soft water delay time in months

\(t_{p} \) potential evapotranspiration equilibrium temperature

\(t_{\text{rh}} \) array to store rh

\(t_{s} \) array to store s

\(t_{t} \) array to store t

\(t_{v} \) array to store v

\(t_{v_d} \) array to store v\(_d\)

\(v \) saturation vapour pressure at \(t \)

\(v_{d} \) saturation vapour pressure at \(t_d \)

\(v_{p} \) saturation vapour pressure at \(t_p \)

\(w \) precipitable water

\(x_m \) variable to calculate mean monthly values
Supplementary Material

Section S21 Worked example of Morton’s CRAE, CRWE and CRLE models within the WREVAP framework

List of variables that are used in this section are taken from Morton (1983a, Appendix D) and from Morton (1986)

(Note these variables are different to those adopted in Section S20 and in the main text and other sections.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Average albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>a_0</td>
<td>Clear-sky albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>a_z</td>
<td>Zenith value of clear-sky albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>a_{zd}</td>
<td>Zenith value of the dry-season snow-free clear sky albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>a_{zz}</td>
<td>Zenith value of clear-sky snow-free albedo</td>
<td>dimensionless</td>
</tr>
<tr>
<td>B</td>
<td>Net longwave radiation loss for soil-plant surface at air temperature</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>b_0</td>
<td>Constant</td>
<td>undefined</td>
</tr>
<tr>
<td>b_1</td>
<td>Constant</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>b_2</td>
<td>Constant</td>
<td>undefined</td>
</tr>
<tr>
<td>c_0</td>
<td>$v - v_D$</td>
<td>mbar</td>
</tr>
<tr>
<td>c_1</td>
<td>Working variable</td>
<td>°C</td>
</tr>
<tr>
<td>c_2</td>
<td>Working variable</td>
<td>dimensionless</td>
</tr>
<tr>
<td>E_P</td>
<td>Potential evaporation</td>
<td>W m$^{-2}$, mm month$^{-1}$</td>
</tr>
<tr>
<td>E_T</td>
<td>Actual areal evapotranspiration</td>
<td>W m$^{-2}$, mm month$^{-1}$</td>
</tr>
<tr>
<td>E_{TP}</td>
<td>Potential evapotranspiration</td>
<td>W m$^{-2}$, mm month$^{-1}$</td>
</tr>
<tr>
<td>E_{TW}</td>
<td>Wet-environment areal evapotranspiration</td>
<td>W m$^{-2}$, mm month$^{-1}$</td>
</tr>
<tr>
<td>E_W</td>
<td>Shallow lake evaporation</td>
<td>W m$^{-2}$, mm month$^{-1}$</td>
</tr>
<tr>
<td>f_T</td>
<td>Vapour transfer coefficient</td>
<td>W m$^{-2}$ mbar$^{-1}$</td>
</tr>
<tr>
<td>f_z</td>
<td>Constant used in estimating f_T</td>
<td>W m$^{-2}$ mbar$^{-1}$</td>
</tr>
<tr>
<td>G</td>
<td>Incident global radiation</td>
<td>W m2</td>
</tr>
<tr>
<td>G_E</td>
<td>Extra-atmospheric global radiation</td>
<td>W m2</td>
</tr>
<tr>
<td>G_L</td>
<td>Available (routed) solar and waterborne energy</td>
<td>W m2</td>
</tr>
<tr>
<td>G_{LB}</td>
<td>Available solar and waterborne heat energy at the beginning</td>
<td>W m2</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>G_{LE}</td>
<td>Available solar and waterborne heat energy at the end of the month</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>G_o</td>
<td>Clear-sky global radiation</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>G_W^0</td>
<td>Solar plus waterborne heat input</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>G_W^t</td>
<td>Delayed solar and waterborne energy inputs</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>$G_W^{[t]}$, $G_W^{[t+1]}$</td>
<td>Value of G_W^0 computed $[t_L]$ and $[t_L+1]$ months</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>\bar{h}</td>
<td>Average depth of lake</td>
<td>m</td>
</tr>
<tr>
<td>H</td>
<td>Site elevation</td>
<td>m</td>
</tr>
<tr>
<td>i</td>
<td>Month number</td>
<td>dimensionless</td>
</tr>
<tr>
<td>j</td>
<td>Turbidity coefficient</td>
<td>undefined</td>
</tr>
<tr>
<td>p_A</td>
<td>Mean annual rainfall</td>
<td>mm year$^{-1}$</td>
</tr>
<tr>
<td>p_s</td>
<td>Atmospheric pressure at mean sea level</td>
<td>mbar</td>
</tr>
<tr>
<td>$\frac{p}{p_s}$</td>
<td>Ratio of atmospheric pressure at station to atmospheric pressure at mean sea level</td>
<td>dimensionless</td>
</tr>
<tr>
<td>RH</td>
<td>Mean daily relative humidity</td>
<td>%</td>
</tr>
<tr>
<td>R_{nl}</td>
<td>Net longwave radiation</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>R_s</td>
<td>Measured incoming solar radiation</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>R_T</td>
<td>Net radiation at soil-plant surface at air temperature</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>R_{TC}</td>
<td>R_T with $R_{TC} \geq 0$</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>R_{TP}</td>
<td>Net radiation at the soil-plant surface for equilibrium temperature</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>R_W</td>
<td>Net radiation for water surface at air temperature</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>s</td>
<td>Average lake salinity</td>
<td>ppm</td>
</tr>
<tr>
<td>S</td>
<td>Ratio of observed to maximum possible sunshine duration</td>
<td>dimensionless</td>
</tr>
<tr>
<td>S_c</td>
<td>Storage coefficient</td>
<td>months</td>
</tr>
<tr>
<td>t_0</td>
<td>Soft water delay time</td>
<td>months</td>
</tr>
<tr>
<td>t_L</td>
<td>Lake lag or delay time</td>
<td>months</td>
</tr>
<tr>
<td>$[t_L]$</td>
<td>Integral component of the lake lag</td>
<td>months</td>
</tr>
<tr>
<td>T</td>
<td>Mean daily air temperature for month</td>
<td>°C</td>
</tr>
<tr>
<td>T_D</td>
<td>Mean daily dew point temperature for month</td>
<td>°C</td>
</tr>
<tr>
<td>T_P</td>
<td>Equilibrium temperature</td>
<td>°C</td>
</tr>
<tr>
<td>T'_P</td>
<td>Trial value of T_P in iteration process</td>
<td>°C</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>W</td>
<td>Precipitable water vapour</td>
<td>mm</td>
</tr>
<tr>
<td>Z</td>
<td>Noon angular zenith distance of sun</td>
<td>radian</td>
</tr>
<tr>
<td>z</td>
<td>Average angular zenith distance of the Sun</td>
<td>radian</td>
</tr>
<tr>
<td>α</td>
<td>Constant Equations (S21.12 and S21.78); albedo Equation (S21.97)</td>
<td>°C; dimensionless</td>
</tr>
<tr>
<td>β</td>
<td>Constant Equations (S21.12 and S21.78)</td>
<td>°C</td>
</tr>
<tr>
<td>γ</td>
<td>Psychrometric constant</td>
<td>mbar °C$^{-1}$</td>
</tr>
<tr>
<td>δh</td>
<td>Water borne heat input</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>Δ</td>
<td>Saturation vapour pressure curve at T</td>
<td>mbar °C$^{-1}$</td>
</tr>
<tr>
<td>Δp</td>
<td>Slope of saturation vapour pressure curve at T_p</td>
<td>mbar °C$^{-1}$</td>
</tr>
<tr>
<td>Δ_T'</td>
<td>Slope of saturation vapour pressure curve at T_p'</td>
<td>mbar °C$^{-1}$</td>
</tr>
<tr>
<td>$[\delta T_p]$</td>
<td>Adjustment to T_p in iteration process</td>
<td>°C</td>
</tr>
<tr>
<td>ε</td>
<td>Surface emissivity</td>
<td>dimensionless</td>
</tr>
<tr>
<td>ξ</td>
<td>Stability factor</td>
<td>undefined</td>
</tr>
<tr>
<td>η</td>
<td>Radius vector of sun</td>
<td>undefined</td>
</tr>
<tr>
<td>θ</td>
<td>Declination of sun</td>
<td>radians</td>
</tr>
<tr>
<td>λ</td>
<td>Heat transfer coefficient</td>
<td>mbar °C$^{-1}$</td>
</tr>
<tr>
<td>ρ</td>
<td>Proportional increase in atmospheric radiation due to clouds</td>
<td>dimensionless</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant</td>
<td>W m$^{-2}$ K$^{-4}$</td>
</tr>
<tr>
<td>τ</td>
<td>Transmittancy of clear sky to direct beam radiation</td>
<td>undefined</td>
</tr>
<tr>
<td>τ_a</td>
<td>Proportion of τ that is the result of absorption</td>
<td>undefined</td>
</tr>
<tr>
<td>ν</td>
<td>Mean daily saturation vapour pressure at air temperature for month</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_D</td>
<td>Mean daily saturation vapour pressure at dew point temperature for month</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_p</td>
<td>Mean daily saturation vapour pressure at equilibrium temperature for month</td>
<td>mbar</td>
</tr>
<tr>
<td>ν_p'</td>
<td>Trial value of ν_p in iteration process</td>
<td>mbar</td>
</tr>
<tr>
<td>ϕ</td>
<td>Latitude</td>
<td>degree, radians</td>
</tr>
<tr>
<td>ω</td>
<td>Angle the earth rotates between sunrise and noon</td>
<td>radian</td>
</tr>
</tbody>
</table>

CRAE: Estimate actual evaporation

Use Morton’s CRAE model to estimate the potential and actual evaporation for July 1980 at Alice Springs (Bureau of Meteorology, Australia station number 15590). Although the general methodology is presented in **Section S7**, the following procedure follows the detailed steps in Morton (1983a, Appendix C) and the Fortran program in **Section S20**. The symbols adopted here are those used by Morton and are different to those used in the Morton Fortran program (**Section S20**) and in the other sections.
The site conditions at Alice Spring automatic weather station are as follows:

Latitude (\(\phi\)) \(-23.7951^{\circ}\)S (negative for southern hemisphere)
-0.4153 radian

Site elevation (\(H\)) 546 m

Mean annual rainfall (\(P_A\)) 285.8 mm year\(^{-1}\)

The meteorological data for July 1980 is:

Mean daily air temperature (\(T\)) 11.8 °C day\(^{-1}\)

Mean daily relative humidity (\(RH\)) 55.5 % day\(^{-1}\)

Mean daily sunshine hours 8.35 hour day\(^{-1}\)

Because Morton assumes dew point temperature is available to estimate saturation vapour pressure rather than relative humidity, we carry out the following preliminary calculations to estimate dew point temperature (\(T_D\)) as follows (Lawrence, 2005, Equation 8):

\[
T_D = \frac{243.04 \left[\ln \left(\frac{RH}{100} \right) + \frac{17.625}{243.04} \right] - \frac{17.625}{243.04}}{17.625 - \ln \left(\frac{RH}{100} \right)}
\]

(S21.1)

where \(T\) is air temperature (°C), \(RH\) is the relative humidity (%).

For July 1980, Alice Springs

\[
T_D = \frac{243.04 \left[\ln \left(\frac{55.5}{100} \right) + \frac{17.625 \times 11.8}{243.04 + 11.8} \right] - \frac{17.625}{243.04 + 11.8}}{17.625 - \ln \left(\frac{55.5}{100} \right)} = 3.1755 \text{ °C}
\]

(S21.2)

To maintain consistency with Morton’s (1983a) procedure, we adopt the units he used in his Appendix C namely W m\(^{-2}\) for radiation, mbar for vapour pressure and °C for temperature. We also adopt Morton’s nomenclature and record below Morton’s equation numbers in italics.

The following two equations refer to the site conditions.

Equation C-1: Compute the ratio (\(\frac{p}{p_s}\)) of atmospheric pressure at Alice Springs station (\(p\)) to that at sea level (\(p_s\)):

\[
\frac{p}{p_s} = \left[\frac{(288 - 0.0065H)}{288} \right]^{5.256}
\]

(S21.3)

\[
\frac{p}{p_s} = \left[\frac{(288 - 0.0065 \times 546)}{288} \right]^{5.256} = 0.9369
\]

(S21.4)

Equation C-2: Estimate the zenith value of the dry-season snow-free clear sky albedo (\(\alpha_{zd}\)):

\[
\alpha_{zd} = 0.26 - 0.00012P_A \left(\frac{p}{p_s} \right)^{0.5} \left[1 + \left| \frac{\phi}{42} \right| + \left(\frac{\phi}{42} \right)^2 \right]
\]

(S21.5)

where \(\phi\) is the latitude in decimal degree (negative for the southern hemisphere).

\[
\alpha_{zd} = 0.26 - 0.00012 \times 285.8(0.9369)^{0.5} \left[1 + \left| \frac{-23.7951}{42} \right| + \left(\frac{-23.7951}{42} \right)^2 \right]
\]

(S21.6)

\[
= 0.1973
\]

Equation C-2a: 0.11 \(\leq \alpha_{zd} \leq 0.17\)

(S21.7)

Hence, given Equation C-2a, adopt \(\alpha_{zd} = 0.17\).

The following sequential operations are carried out for each month.
Initially, we need to compute the mean maximum daylight hours for July at Alice Springs. The procedure is described earlier in Section S19 – see Equation (S3.11). The value is 10.68 hours. The mean daily sunshine for July 1980 was recorded as 8.34 hour day\(^{-1}\) giving a ratio of observed to maximum possible sunshine duration \(S\) of 0.7818.

Equation C-3: Compute the saturation vapour pressure \((v_D)\) at dew point temperature (\(^\circ\)C)
\[
v_D = 6.11 \exp \left[\frac{17.27 T_D}{T_D + 237.3} \right] \quad \text{(S21.8)}
\]
\[
v_D = 6.11 \exp \left[\frac{17.27 \times 3.1755}{3.1755 + 237.3} \right] = 7.6751 \text{ mbar} \quad \text{(S21.9)}
\]

Equation C-4: Compute the saturation vapour pressure \((v)\) at air temperature (\(^\circ\)C)
\[
v = 6.11 \exp \left[\frac{17.27 T}{T + 237.3} \right] \quad \text{(S21.10)}
\]
\[
v = 6.11 \exp \left[\frac{17.27 \times 11.8}{11.8 + 237.3} \right] = 13.8463 \text{ mbar} \quad \text{(S21.11)}
\]

Equation C-5: Compute the slope of the saturation vapour pressure \((\Delta)\) curve at \(T\) °C.
\[
\Delta = \frac{\alpha \beta v}{(T + \beta)^2} \quad \text{(S21.12)}
\]
\[
\alpha = 17.27 \text{ °C when } T \geq 0 \text{ °C, otherwise } \alpha = 21.88 \text{ °C (Morton, 1983a, page 60)}
\]
\[
\beta = 237.3 \text{ °C when } T \geq 0 \text{ °C, otherwise } \beta = 265.5 \text{ °C (Morton, 1983a, page 60)}
\]
\[
\Delta = \frac{17.27 \times 237.3 \times 13.8463}{(11.8 + 237.3)^2} = 0.9145 \text{ mbar} \quad \text{(S21.13)}
\]

Equation C-6: Compute angles and functions for estimating extra-terrestrial global radiation.
\[
\theta = 23.2 \sin (29.5 i - 94) \quad \text{(S21.14)}
\]
where \(i\) is month of year, for July \(i = 7\), and \(\theta\) is in degrees (Morton, 1983a, Item (1)).
\[
\theta = \left(23.2 \sin \left((29.5 \times 7 - 94) \frac{\pi}{180} \right) \right) \frac{\pi}{180} = 0.3741 \text{ radian} \quad \text{(S21.15)}
\]

As Morton’s equations are based on degrees, the inner \(\frac{\pi}{180}\) converts degrees to radians and the outer converts the resulting angle in degrees to radians.

Equation C-7:
\[
\cos Z = \cos (\theta - \theta) \quad \text{(S21.16)}
\]
\[
\cos Z = \cos (-0.4153 - 0.3741) = 0.7043 \quad \text{(S21.17)}
\]
\[
Z = \arccos(0.7043) = 0.7894 \text{ radian} \quad \text{(S21.18)}
\]

Equation C-7a: \(\cos Z \geq 0.001\)
\[
\text{Hence Equation C-7a is satisfied}
\]

Equation C-8:
\[
\cos \omega = 1 - \frac{\cos Z}{\cos \theta \cos \theta} \quad \text{(S21.20)}
\]
\[
\cos \omega = 1 - \frac{0.7043}{\cos (0.3741) \cos (-0.4153)} = 0.1731 \quad \text{(S21.21)}
\]
\[
\omega = \arccos (0.1731) = 1.3968 \text{ radian} \quad \text{(S21.22)}
\]
Equation C-8a: $\cos \omega \geq -1$
Hence Equation C-8a is satisfied

Equation C-9:

$$\cos z = \cos Z + \left[\frac{180 \sin \omega}{\pi} - 1 \right] \cos \emptyset \cos \theta$$ \hspace{1cm} (S21.23)

$$\cos z = 0.7043 + \left[\frac{\sin (1.3968)}{1.3968} - 1 \right] \cos (-0.4153) \cos (0.3741) = 0.4531$$ \hspace{1cm} (S21.24)

Note: $\frac{180}{\pi}$ in Equation (S21.23) (from Morton, 1983a, Equation C-9) is deleted as ω is in radian.

Equation C-10: Compute the radius vector of the sun (η)

$$\eta = 1 + \frac{1}{60} \sin (29.5 i - 106)$$ \hspace{1cm} (S21.25)

$$\eta = 1 + \frac{1}{60} \sin \left((29.5 \times 7 - 106) \frac{\pi}{180} \right) = 1.0164$$ \hspace{1cm} (S21.26)

Equation C-11: Compute of extra-terrestrial global radiation (G_E)

$$G_E = \frac{1354}{\eta^2} \frac{\omega}{180} \cos z$$ \hspace{1cm} (S21.27)

$$G_E = \frac{1354}{(1.0164)^2} \frac{1.3968}{\pi} \times 0.4531 = 264.0388 \text{ W m}^{-2}$$ \hspace{1cm} (S21.28)

Note: The division by π rather than 180 in Equation S21.28 is because ω is in radian.

Equation C-12: Estimate the zenith value of snow-free clear sky albedo (a_{zz})

$$a_{zz} = a_{zd} = 0.17$$ \hspace{1cm} (S21.29)

Equation C-12a: $0.11 \leq a_{zz} \leq 0.5 \left(0.91 - \frac{v_D}{v} \right)$

$$0.11 \leq a_{zz} \leq 0.5 \left(0.91 - \frac{7.6751}{13.8463} \right), \hspace{1cm} 0.11 \leq a_{zz} \leq 0.1778$$ \hspace{1cm} (S21.31)

Hence Equation C-12a is satisfied.

Equation C-13:

$$c_0 = v - v_D$$ \hspace{1cm} (S21.32)

$$c_0 = 13.8463 - 7.6751 = 6.1712 \text{ mbar}$$ \hspace{1cm} (S21.33)

Equation C-13a: $0 \leq c_0 \leq 1$ \hspace{1cm} (S21.34)

Equation C-13a not satisfied, adopt $c_0 = 1$. This constraint will be effective during snow cover when the vapour pressure deficit is less than one mbar.

Equation C-14: Estimate the zenith value of the clear-sky albedo (a_z)

$$a_z = a_{zz} + (1 - c_0^2)(0.34 - a_{zz})$$ \hspace{1cm} (S21.35)

$$a_z = 0.17 + (1 - 1)(0.34 - 0.17) = 0.17$$ \hspace{1cm} (S21.36)

Equation C-15: Estimate the clear-sky albedo (a_0)

$$a_0 = \frac{a_z \exp(1.08) - \frac{2.16 \cos Z + \sin Z \exp(0.021 Z)}{1.473(1 - \sin Z)}}{1}$$ \hspace{1cm} (S21.37)
\[a_0 = \frac{0.17 \left[\exp(1.08) - \left(\frac{2.16 \times 0.7043}{\pi} \cdot \sin 0.7894 \right) \exp \left(\frac{0.021 \times 0.7894 \times 180}{\pi} \right) \right]}{1.473(1-\sin 0.7894)} = 0.3540\quad (S21.38)\]

Note: \(\frac{180}{\pi}\) in Equation (S21.38) is to adjust \(Z\) from radian to degree.

Equation C-16: Estimate the precipitable water (\(W\)) in mm.

\[W = \frac{v_P}{0.49 + \frac{T}{129}}\quad (S21.39)\]

\[W = \frac{7.6751}{0.49 + \frac{11.8}{129}} = 13.1994\text{ mm} \quad (S21.40)\]

Equation C-17:

\[c_1 = 21 - T\quad (S21.41)\]

\[c_1 = 21 - 11.8 = 9.2\quad (S21.42)\]

Equation C-17a: \(0 \leq c_1 \leq 5\)

\(c_1\) is not satisfied, adopt \(c_1 = 5\).

Equation C-18: Compute the turbidity coefficient (\(j\))

\[j = (0.5 + 2.5 \cos^2 z) \exp \left[c_1 \left(\frac{P}{P_z} - 1 \right) \right]\quad (S21.44)\]

\[j = (0.5 + 2.5 (0.4531)^2) \exp [5(0.9369 - 1)] = 0.7391\quad (S21.45)\]

Equation C-19: Compute the transmittancy of clear sky to direct beam radiation (\(\tau\))

\[\tau = \exp \left[-0.089 \left(\frac{1}{P_z \cos z} \right)^{0.75} - 0.083 \left(\frac{j}{\cos z} \right)^{0.90} - 0.029 \left(\frac{W}{\cos z} \right)^{0.60} \right]\quad (S21.46)\]

\[\tau = \exp \left[-0.089 \left(0.9369 \cdot \frac{1}{0.4531} \right)^{0.75} - 0.083 \left(0.7391 \right)^{0.90} - 0.029 \left(13.1994 \right)^{0.60} \right] = 0.6055\quad (S21.47)\]

Equation C-20: Estimate the proportion of \(\tau\) that is the result of absorption (\(\tau_a\))

\[\tau_a = \exp \left[-0.0415 \left(\frac{j}{\cos z} \right)^{0.90} - (0.0029) 0.5 \left(\frac{W}{\cos z} \right)^{0.3} \right]\quad (S21.48)\]

\[\tau_a = \exp \left[-0.0415 \left(0.7391 \right)^{0.90} - (0.0029) 0.5 \left(13.1994 \right)^{0.3} \right] = 0.8085\quad (S21.49)\]

Equation C-20a: \(\tau_a \geq \exp \left[-0.0415 \left(\frac{j}{\cos z} \right)^{0.90} - 0.029 \left(\frac{W}{\cos z} \right)^{0.6} \right]\quad (S21.50)\]

Checking Equation C-20a constraint

\[\tau_a \geq \exp \left[-0.0415 \left(0.7391 \right)^{0.90} - 0.029 \left(13.1994 \right)^{0.6} \right] \geq 0.7530 \quad (S21.51)\]

Equation C-20a constraint is satisfied.

Equation C-21: Compute clear-sky global radiation (\(G_o\))

\[G_o = G_E \tau \left[1 + \left(1 - \frac{1}{\tau_a} \right) (1 + a_0 \tau) \right]\quad (S21.52)\]

\[G_o = 264.0388 \times 0.6055 \left[1 + \left(1 - \frac{0.6055}{0.8085} \right) (1 + 0.3540 \times 0.6055) \right] = 264.0388 \times 0.6055 \left[1 + \left(1 - \frac{0.6055}{0.8085} \right) (1 + 0.3540 \times 0.6055) \right] \quad (S21.53)\]
\[G_o = 208.6217 \text{ W m}^{-2} \]

Equation C-22: Compute the incident global radiation \((G)\)

\[
G = S G_o + (0.08 + 0.30 S)(1 - S) G_E
\]

\[
G = 0.7818 \times 208.6217 + (0.08 + 0.30 \times 0.7818)(1 - 0.7818) 264.0388
\]

\[
G = 181.2221 \text{ W m}^{-2}
\]

Equation C-23: Estimate the average albedo \((a)\)

\[
a = a_0 \left[S + (1 - S) \left(1 - \frac{2}{330} \right) \right]
\]

\[
a = 0.3540 \left[0.7818 + (1 - 0.7818) \left(1 - \frac{0.7894}{330} \pi \right) \right] = 0.3434
\]

Equation C-24:

\[
c_2 = 10 \left(\frac{v_D}{v} - S - 0.42 \right)
\]

\[
c_2 = 10 \left(\frac{7.6751}{13.8463} - 0.7818 - 0.42 \right) = -6.4749
\]

Equation C-24a: \(0 \leq c_2 \leq 1\)

Constraint: Equation C-24a is not satisfied, hence set \(c_2 = 0\)

Equation C-25: Estimate the proportional increase in atmospheric radiation due to clouds \((\rho)\)

\[
\rho = 0.18 \left[(1 - c_2)(1 - S)^2 + c_2(1 - S)^{0.5} \right] \frac{P_S}{P}
\]

\[
\rho = 0.18 \left[(1 - 0)(1 - 0.7818)^2 + 0(1 - 0.7818)^{0.5} \right] \frac{1}{0.9369} = 0.009147
\]

Equation C-26: Compute net longwave radiation loss for soil-plant surface at air temperature \((B)\)

\[
B = \varepsilon \sigma (T + 273)^4 \left[1 - \left(0.71 + 0.007 v_D \frac{P}{P_s} \right) (1 + \rho) \right]
\]

From Morton (1983a, page 64), \(\varepsilon\) (emissivity) = 0.92, \(\sigma\) (Stefan-Boltzmann constant) = \(5.67 \times 10^{-8}\) W m\(^{-2}\) K\(^{-4}\). Thus,

\[
B = 0.92 \times 5.67 \times 10^{-8} (11.8 + 273)^4 \left[1 - (0.71 + 0.007 \times 7.6751 \times 0.9369) \right] (1 + 0.009147)
\]

\[
B = 79.8629 \text{ W m}^{-2}
\]

Equation C-26a: \(B \geq 0.05 \varepsilon \sigma (T + 273)^4\)

Constraint = \(0.05 \times 0.92 \times 5.67 \times 10^{-8} (11.8 + 273)^4 = 17.1594\)

and thus Equation C-26a constraint is satisfied.

Equation C-27: Estimate net radiation at soil-plant surface at air temperature

\[
R_T = (1 - a) G - B
\]

\[
R_T = (1 - 0.3434) 181.2221 - 79.8629 = 39.1275 \text{ W m}^{-2}
\]

Equation C-28: \(R_{TC} = R_T = 39.1275 \text{ W m}^{-2}\)

Equation C-28a: \(R_{TC} \geq 0\), and constraint is satisfied.

Equation C-29: Compute stability factor \((\xi)\)
\[\frac{1}{\xi} = 0.28 \left(1 + \frac{u_D}{v}\right) + \frac{\Delta R_{TC}}{\gamma p \left(\frac{28}{p}\right)^{0.5} b_0 f_z(v - u_D)} \]
(S21.69)

From Morton (1983a, page 64), \(b_0 = 1 \) for the CRAE model, and noting that \(\gamma p = \gamma p_s \left(\frac{p}{p_s}\right) \), \(f_z \) and \(\gamma p_s \) are respectively 28.0 W m\(^{-2}\) mbar\(^{-1}\) and 0.66 mbar °C\(^{-1}\) for \(T \geq 0 \) °C. For \(T < 0 \), \(f_z = 28.0 \times 1.15 \) W m\(^{-2}\) mbar\(^{-1}\) and \(\gamma p_s = 0.66/1.15 \) mbar °C\(^{-1}\).

\[\frac{1}{\xi} = 0.28 \left(1 + \frac{7.6751}{13.8463}\right) + \frac{0.9145 \times 39.1275}{0.66 + 0.9369(1/0.9369)^{0.51 \times 28.0(13.8463 - 7.6751)}} = 0.7594 \]
(S21.70)

Equation C-29a: \(\frac{1}{\xi} \leq 1 \). Constraint is satisfied.

Equation C-30: Estimate the vapour transfer coefficient \((f_T) \)

\[f_T = \left(\frac{1}{\xi} \frac{p_s}{p}\right)^{0.5} f_z \]
(S21.71)

\[f_T = 0.7594 \left(\frac{1}{0.9369}\right)^{0.5} 28.0 = 21.9676 \]
(S21.72)

Equation C-31: Estimate the heat transfer coefficient \((\lambda) \)

\[\lambda = \gamma p + \frac{4 \varepsilon \sigma (T + 273)^3}{f_T} \]
(S21.73)

\[\lambda = 0.66 \times 0.9369 + \frac{4 \times 0.92 \times 5.67 \times 10^{-8} (11.8 + 273)^3}{21.9676} = 0.8378 \]
(S21.74)

The penultimate step in estimating Morton CRAE evaporations is to estimate the potential evapotranspiration equilibrium temperature. This can be found by using Morton’s (1983a, Equations C-32 to C-35) converging iterative process. The four equations are as follows:

Equation C-32: \([\delta T_p] = \frac{R_T + u_D - v_p + \alpha(T - T_p')}{(\Delta p + \lambda)} \)
(S21.75)

Equation C-33: \(T_p = T_p' + [\delta T_p] \)
(S21.76)

Equation C-34: \(v_p = 6.11 \exp \left[\frac{\alpha T_p}{(T_p + \beta)}\right] \)
(S21.77)

Equation C-35: \(\Delta p = \frac{\alpha \beta v_p}{(T_p + \beta)^2} \)
(S21.78)

Initial values of \(T_p' \), \(u_p' \) and \(\Delta p' \) are chosen equal to \(T \), \(v \) and \(\Delta \) and intermediate values of \(T_p \), \(u_p \) and \(\Delta p \) are calculated from Equations C-33, C-34 and C-35 and \([\delta T_p]\) from Equation C-32. The intermediate values then replace the initial values in Equations C-33, C-34 and C-35, again calculating \([\delta T_p]\). This process is repeated until \([\delta T_p] \leq 0.01 \) °C. As the table below shows, only two iterations were required to solve for \(T_p \) for our example.

<table>
<thead>
<tr>
<th>Initial values</th>
<th>Initial pass</th>
<th>2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_p' = 11.8)</td>
<td>(T_p = 9.2947)</td>
<td>(T_p = 9.1963)</td>
</tr>
<tr>
<td>(u_p' = 13.8463)</td>
<td>(u_p = 11.7150)</td>
<td>(u_p = 11.6376)</td>
</tr>
<tr>
<td>(\Delta p' = 0.9145)</td>
<td>(\Delta p = 0.7895)</td>
<td>(\Delta p = 0.7849)</td>
</tr>
<tr>
<td>([\delta T_p]) = -2.5053</td>
<td>([\delta T_p]) = -0.0982</td>
<td>([\delta T_p]) = -0.0001</td>
</tr>
</tbody>
</table>
Equation C-36: Estimate potential evapotranspiration (ET_P)

\[ET_P = R_T - \lambda f_T (T_P - T) \]
(S21.79)

\[ET_P = 39.1275 - 0.8378 \times 21.9676(9.1963 - 11.8) \]
(S21.80)

\[ET_P = 87.0472 \text{ W m}^{-2} \]
(S21.81)

Equation C-37: Estimate net radiation (R_{TP}) at the soil-plant surface for equilibrium temperature.

\[R_{TP} = ET_P + \gamma p_f T (T_P - T) \]
(S21.82)

\[R_{TP} = 87.0472 + 0.66 \times 0.9369 \times 21.9676(9.1963 - 11.8) \]
(S21.83)

\[R_{TP} = 51.6792 \text{ W m}^{-2} \]
(S21.84)

Equation C-38: Estimate wet-environment areal evapotranspiration (ET_W)

\[ET_W = b_1 + \frac{b_2}{(1 + \frac{\gamma p}{\delta p})} R_{TP} \]
(S21.85)

Morton (1983a, page 65) recommended values for b_1 and b_2 as 14 W m$^{-2}$ and 1.20 respectively.

\[ET_W = 14 + \left(1 + \frac{1.20}{0.66 \times 0.9369 \times 0.7849} \right) 51.6792 = 48.6877 \text{ W m}^{-2} \]
(S21.86)

Equation C-38a: Constraint is $\frac{1}{2} ET_P \leq ET_W \leq ET_P$. The constraint is satisfied.

Equation C-39: Estimate actual areal evapotranspiration (ET)

\[ET = 2 ET_W - ET_P \]
(S21.87)

\[ET = 2 \times 48.6877 - 87.0472 = 10.3282 \text{ W m}^{-2} \]
(S21.88)

The final step is to convert evaporation in power unit of W m$^{-2}$ to evaporation units of mm day$^{-1}$ by dividing by the latent heat of vaporization which for $T \geq 0^\circ C$ is 28.5 W day kg$^{-1}$ and for $T < 0^\circ C$, it is 28.5 × 1.15 W day kg$^{-1}$. Hence,

\[ET_P = 87.0472 \text{ W m}^{-2} = \frac{87.0472}{28.5} = 3.0543 \text{ mm day}^{-1} \]
(S21.89)

\[ET_W = 48.6877 \text{ W m}^{-2} = \frac{48.6877}{28.5} = 1.7083 \text{ mm day}^{-1} \]
(S21.90)

\[ET = 10.3282 \text{ W m}^{-2} = \frac{10.3282}{28.5} = 0.3624 \text{ mm day}^{-1} \]
(S21.91)

In conclusion, the July 1980 evaporation rates at Alice Springs are as follows:

\[ET_P \text{ (potential evapotranspiration)} = 3.0543 \times 31 = 94.7 \text{ mm month}^{-1} \]

\[ET_W \text{ (wet-environment areal evapotranspiration)} = 1.7083 \times 31 = 53.0 \text{ mm month}^{-1} \]

\[ET \text{ (actual areal evapotranspiration)} = 0.3624 \times 31 = 11.2 \text{ mm month}^{-1} \]

CRWE: Estimate shallow lake evaporation
To estimate shallow lake evaporation, the CRWE model, which is a slightly modified version of CRAE, may be used. The modifications are listed in Morton (1983a, Section 2.6) as follows:

1. The snow-free clear-sky albedo (a_{zz}) is set to a constant value of 0.05. This allows Equations C-2, C-12 and their constraints to be deleted.
2. The emissivity (ε) in Equations C-26, C26a and C31 is set to 0.97. Hence, $\varepsilon \sigma$ becomes 5.5×10^{-8} W m$^{-2}$ K$^{-4}$.
3. In Equations C-29 and C-30, f_z is 25.0 W m$^{-2}$ mbar$^{-1}$ for $T \geq 0$, and 28.75 W m$^{-2}$ mbar$^{-1}$ for $T < 0$.
4. In Equation C-29, $b_0 = 1.12$.
5. Values for b_1 and b_2 are 13 W m$^{-2}$ and 1.12 respectively.
6. To reflect the change in the type of evaporation that is taking place in Equations C-27, C-36 and C-38, R_T becomes R_W, E_{TP} becomes E_P and E_{TW} becomes E_W (shallow lake evaporation).

Applying these modifications to the CRAE model for July 1980 at Alice Springs yields the following results:

<table>
<thead>
<tr>
<th>Morton equation number</th>
<th>Variable</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>$\frac{p}{p_s}$</td>
<td>0.9369</td>
</tr>
<tr>
<td>C-3</td>
<td>v_D</td>
<td>7.6751</td>
</tr>
<tr>
<td>C-4</td>
<td>ν</td>
<td>13.8463</td>
</tr>
<tr>
<td>C-5</td>
<td>Δ</td>
<td>0.9145</td>
</tr>
<tr>
<td>C-6</td>
<td>θ</td>
<td>0.3741</td>
</tr>
<tr>
<td>C-7</td>
<td>$\cos Z$</td>
<td>0.7043</td>
</tr>
<tr>
<td>C-8</td>
<td>$\cos \omega$</td>
<td>0.1731</td>
</tr>
<tr>
<td>C-9</td>
<td>$\cos z$</td>
<td>0.4531</td>
</tr>
<tr>
<td>C-10</td>
<td>η</td>
<td>1.0164</td>
</tr>
<tr>
<td>C-11</td>
<td>G_E</td>
<td>264.04</td>
</tr>
<tr>
<td>C-12</td>
<td>c_0</td>
<td>6.1712</td>
</tr>
<tr>
<td>C-13</td>
<td>a_z</td>
<td>0.05</td>
</tr>
<tr>
<td>C-14</td>
<td>a_0</td>
<td>0.1041</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morton equation number</th>
<th>Variable</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16</td>
<td>W</td>
<td>13.199</td>
</tr>
<tr>
<td>C17</td>
<td>c_1</td>
<td>9.2</td>
</tr>
<tr>
<td>C18</td>
<td>j</td>
<td>0.7391</td>
</tr>
<tr>
<td>C19</td>
<td>τ</td>
<td>0.6055</td>
</tr>
<tr>
<td>C20</td>
<td>τ_a</td>
<td>0.8085</td>
</tr>
<tr>
<td>C21</td>
<td>G_o</td>
<td>202.55</td>
</tr>
<tr>
<td>C22</td>
<td>G</td>
<td>176.47</td>
</tr>
<tr>
<td>C23</td>
<td>a</td>
<td>0.1010</td>
</tr>
<tr>
<td>C24</td>
<td>c_2</td>
<td>-6.475</td>
</tr>
<tr>
<td>C25</td>
<td>ρ</td>
<td>0.00913</td>
</tr>
<tr>
<td>C26</td>
<td>B</td>
<td>84.203</td>
</tr>
<tr>
<td>C27</td>
<td>R_W</td>
<td>74.446</td>
</tr>
<tr>
<td>C28</td>
<td>R_{TC}</td>
<td>74.446</td>
</tr>
<tr>
<td>C29</td>
<td>$\frac{1}{\xi}$</td>
<td>1.0935</td>
</tr>
<tr>
<td>C30</td>
<td>f_T</td>
<td>28.243</td>
</tr>
<tr>
<td>C31</td>
<td>λ</td>
<td>0.7983</td>
</tr>
<tr>
<td>C32</td>
<td>$[\delta T_P]$</td>
<td>0.0000</td>
</tr>
<tr>
<td>C33</td>
<td>T_P</td>
<td>9.6680</td>
</tr>
<tr>
<td>C34</td>
<td>u_P</td>
<td>12.013</td>
</tr>
<tr>
<td>C35</td>
<td>Δ_P</td>
<td>0.8072</td>
</tr>
<tr>
<td>C36</td>
<td>E_P</td>
<td>122.352</td>
</tr>
<tr>
<td>C37</td>
<td>R_{TP}</td>
<td>85.282</td>
</tr>
<tr>
<td>C38</td>
<td>E_W</td>
<td>71.946</td>
</tr>
</tbody>
</table>

CRLE: Incorporating water borne energy input and available solar plus water borne energy routing for deep lake evaporation

Estimate the March 2008 evaporation for the Thomson Reservoir, a deep lake 120 km east of Melbourne (latitude 37.75 °S, elevation 415 m, average depth (\bar{h}) 22.95 m, and average salinity (s) 23 ppm).
The method is based on Morton (1986). The soft water delay time, the lake delay time and the storage coefficient are computed first:

$$t_0 = 0.96 + 0.013 \times h \leq t_0 \leq 0.13 \times h$$ (see Equation (S7.15)) \hspace{1cm} (S21.91)

where t_0 is soft water delay time.

$$t_0 = 0.96 + 0.013 \times 22.95 = 1.2584 \text{ months}$$ \hspace{1cm} (S21.92)

t_0 is within the range $0.039 \times h = 0.8950$ and $0.13 \times h = 2.9835$

$$t_L = \frac{t_0}{\left(1 + \frac{s}{27000}\right)^2} \text{ with } t \leq 6.0 \text{ (see Equation (S7.16))}$$ \hspace{1cm} (S21.93)

where t_L is lake lag or delay time and s is lake salinity in ppm

$$t_L = \frac{1.2584}{\left(1 + \frac{22.95}{27000}\right)^2} = 1.2563 \text{ months (which is less than 6.0)}$$ \hspace{1cm} (S21.94)

$$S_c = \frac{t_0}{\left(1 + \frac{h}{93}\right)^7} \text{ (see Equation (S7.14))}$$ \hspace{1cm} (S21.95)

where S_c is storage constant (months)

$$S_c = \frac{1.2584}{\left(1 + \frac{22.95}{93}\right)^7} = 1.2583 \text{ months}$$ \hspace{1cm} (S21.96)

The sequential steps in the computation of monthly deep lake evaporation are as follows:

Step 1: Estimate and add together solar and water borne heat input, thus

$$G_W^0 = (1 - \alpha)R_s - R_{nl} + \delta h \text{ (see Equation (S7.10))}$$ \hspace{1cm} (S21.97)

where G_W^0 is the solar input (the superscript refers to the current month) plus waterborne heat input (δh) and α is the albedo for water.

In this example, because the Thomson Reservoir is very large and there is no waterborne input, $\delta h = 0$. Values of G_W^0 and G_{LE} (see step 3 below) for January 2008 and February 2008 are:

<table>
<thead>
<tr>
<th></th>
<th>January 2008</th>
<th>February 2008</th>
<th>March 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_W^0 (W m$^{-2}$)</td>
<td>187</td>
<td>152</td>
<td>120</td>
</tr>
<tr>
<td>G_{LE} (W m$^{-2}$)</td>
<td>160</td>
<td>175</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Step 2: Estimate the delayed solar and waterborne energy inputs (see Section S7).

$$G_W = G_W^{[t_L]} + (t_L - [t_L]) \left(G_W^{[t_L+1]} - G_W^{[t_L]} \right) \text{ (see Equation (S7.11))}$$ \hspace{1cm} (S21.98)

where $[t_L]$ and $(t_L - [t_L])$ are the integral and fractional components of the lake lag or delay time, t_L (months), $G_W^{[t_L]}$ and $G_W^{[t_L+1]}$ are respectively the value (W m$^{-2}$) of G_W^0 computed $[t_L]$ and $[t_L + 1]$ months previously. In this example, from Equation (S21.94) $t_L = 1.2563$ months and, therefore, $[t_L] = 1$ month and $(t_L - [t_L]) = 0.2563$ months.

Thus to estimate G_W^L for March 2008, Equation (S21.98) becomes
\[G_{W}^{\text{Mar08}} = G_{W}^{\text{Feb08}} + (t_L - [t_L]) \left(G_{W}^{\text{Jan08}} - G_{W}^{\text{Feb08}} \right) \]

(S21.99)

\[G_{W}^{\text{Mar08}} = 152 + (0.2563)(187 - 152) = 160.71 \text{ W m}^{-2} \]

(S21.100)

Step 3: Compute the available and water borne energy.

\[G_{LE} = G_{LB} + \frac{G_{W}^{\text{Mar08}} - G_{LB}}{0.5 + S_c} \] (see Equation (S7.12))

(S21.101)

\[G_{L} = 0.5(G_{LE} + G_{LB}) \] (see Equation (S7.13))

(S21.102)

where \(G_{LB} \) and \(G_{LE} \) are respectively the available solar and waterborne heat energy (W m\(^{-2}\)) at the beginning and end of the month

\[G_{LE}^{\text{Mar08}} = 175 + \frac{160.71 - 175}{0.5 + 1.2583} = 166.87 \text{ W m}^{-2} \]

(S21.104)

\[G_{L}^{\text{Mar08}} = 0.5(G_{LE}^{\text{Mar08}} + G_{LB}) \]

(S21.105)

\[G_{L}^{\text{Mar08}} = 0.5(166.87 + 175) = 170.94 \text{ W m}^{-2} \]

(S21.106)

Step 4: Convert the available energy per month to a monthly lake evaporation rate by applying the sequence of steps set out in the worked example \textit{CRAE: Estimate actual evaporation} after Equation S21.87 where

\[R_{TC} = G_{L}^{\text{Mar08}} = 170.94 \text{ W m}^{-2} \]

(S21.107)

These calculations yield the March 2008 lake evaporation for Thomson Reservoir as 186 mm.
References for Supplementary Material

Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J., and Jackson, P.: Control of transpiration from the upper canopy of a tropical forest: the role of stomatal,

Vardavas, I.M. and Fountoulakis, A.: Estimation of lake evaporation from standard meteorological measurements: application to four Australian lakes in different climatic regions, Ecological Modelling, 84, 139-150, 1996.

Table S1 Values of specific constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Symbol</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric pressure</td>
<td>p</td>
<td>$101.3 \left(\frac{293 - 0.0065 E_{lev}}{293}\right)^{5.26}$ kPa*</td>
<td>Dingman (1992, p. 224)</td>
</tr>
<tr>
<td>Density of water</td>
<td>ρ_w</td>
<td>997.9 kg m$^{-3}$ at 20°C</td>
<td>Dingman (1992, p. 542)</td>
</tr>
<tr>
<td>Mean air density</td>
<td>ρ_a</td>
<td>1.20 kg m$^{-3}$ at 20°C</td>
<td>Shaw (1994, p. 6)</td>
</tr>
<tr>
<td>Emissivity of water</td>
<td>ε_w</td>
<td>0.95</td>
<td>Dingman (1992, p. 583)</td>
</tr>
<tr>
<td>Surface emissivity</td>
<td>ε_s</td>
<td>0.92 (adopted by Morton)</td>
<td>Morton (1983b, p. 64)</td>
</tr>
<tr>
<td>Specific heat of water</td>
<td>c_w</td>
<td>4.19 kJ kg$^{-1}$ °C$^{-1}$</td>
<td>Maidment (1992, p. 7.23)</td>
</tr>
<tr>
<td>Specific heat of air</td>
<td>c_a</td>
<td>1013 J kg$^{-1}$ K$^{-1}$</td>
<td>Morton (1979, p. 72)</td>
</tr>
<tr>
<td>Latent heat of vaporization</td>
<td>λ</td>
<td>2.45 MJ kg$^{-1}$ at 20°C</td>
<td>Dingman (1992, p. 547)</td>
</tr>
<tr>
<td>Psychrometric constant</td>
<td>γ</td>
<td>$\gamma = 0.00163 \frac{p}{\lambda}$ kPa°C$^{-1}$</td>
<td>Dingman (1992, p. 225)</td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>σ</td>
<td>4.90×10^{-9} MJ m$^{-2}$ day$^{-1}$ K$^{-4}$</td>
<td>Dingman (1992, p. 582)</td>
</tr>
<tr>
<td>von Kármán constant</td>
<td>k</td>
<td>0.41</td>
<td>Morton (1983a, p. 64)</td>
</tr>
</tbody>
</table>

* E_{lev} is elevation (m)
<table>
<thead>
<tr>
<th>Surface</th>
<th>Location</th>
<th>Height of surface condition (m)</th>
<th>Zero-plane displacement (m)</th>
<th>Roughness length (m)</th>
<th>Aerodynamic resistance, r_a, (s m$^{-1}$)</th>
<th>Average surface resistance, r_s, (s m$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open sea, fetch >5 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>see Section S4</td>
<td></td>
</tr>
<tr>
<td>Open water</td>
<td>0.01 n</td>
<td>0.0002 o</td>
<td>0.001 n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open flat terrain: grass</td>
<td></td>
<td>0.01 n</td>
<td>0.001 n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td>0.001 e</td>
<td>0.1 c</td>
<td>0.05 c</td>
<td>200 e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-desert</td>
<td></td>
<td>0.5 c</td>
<td>0.1 c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arid land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 j</td>
<td></td>
</tr>
<tr>
<td>Cultivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91 f</td>
<td></td>
</tr>
<tr>
<td>Hypothetical reference crop</td>
<td>0.12 a</td>
<td></td>
<td></td>
<td>104 a</td>
<td>70 a</td>
<td></td>
</tr>
<tr>
<td>Well watered production crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short grass</td>
<td>0.2 c</td>
<td>0.2 c</td>
<td>0.02 c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall grass</td>
<td>1 c</td>
<td>0.1 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low crops</td>
<td></td>
<td>0.10 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High crops</td>
<td></td>
<td>0.25 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td>Based on 7 sites in northern hemisphere</td>
<td>0.5* e, g (0.05 – 0.85) 0.5e</td>
<td></td>
<td>0.01 e, g (14 - 71) 37 e, g (5 – 14) 40 e, g (5 – 143)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Uncut lucerne</td>
<td>1.0 n</td>
<td>0.1 n</td>
<td>22 n</td>
<td>60 n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evergreen shrub</td>
<td>1 c</td>
<td>0.1 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deciduous shrub</td>
<td>1 c</td>
<td>0.1 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkland, bushes</td>
<td></td>
<td>0.5 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-forest wetland</td>
<td>0.3 e</td>
<td></td>
<td></td>
<td></td>
<td>152 e</td>
<td></td>
</tr>
<tr>
<td>Savannah/xeric shrub</td>
<td>8.0 e</td>
<td></td>
<td></td>
<td></td>
<td>189 e</td>
<td></td>
</tr>
<tr>
<td>Coniferous forest</td>
<td>Based on 8 references worldwide</td>
<td>8 e, g (5 – 20) 25</td>
<td></td>
<td>7 e, g (5 – 14) 50 e, g (30 - 125)</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Evergreen needleleaf forest</td>
<td></td>
<td>15 c</td>
<td>1.0 c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest Type</td>
<td>Location</td>
<td>Diameter (cm)</td>
<td>Height (m)</td>
<td>Seasonal Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deciduous needleleaf forest</td>
<td>Northern Apennines, Italy</td>
<td>20</td>
<td>1.0</td>
<td>200 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evergreen broadleaf forest</td>
<td></td>
<td>20</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td></td>
<td>15</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus plantation</td>
<td>São Paulo State, Brazil</td>
<td>12-21 b</td>
<td>summer 19±14 b</td>
<td>winter 9±2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus maculata</td>
<td>Kioloa State Forest, NSW, Australia</td>
<td></td>
<td>summer 19±14 b</td>
<td>winter 167±292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus forest</td>
<td>Collie, Western Australia</td>
<td>5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower montane rainforest</td>
<td>Nth Q’ld, Australia</td>
<td>25 & 32 m</td>
<td>summer 71 & 163 m</td>
<td>winter 56 & 119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine lowland rain forest</td>
<td>Nth Q’ld, Australia</td>
<td>27 m</td>
<td>summer 171 m</td>
<td>winter 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper montane cloud rainforest</td>
<td>Nth Q’ld, Australia</td>
<td>8 m</td>
<td>summer 317 m</td>
<td>winter 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed woodland</td>
<td></td>
<td>20</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical rainforest</td>
<td>French Guiana</td>
<td>~28 d</td>
<td>140 – 170 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical trees</td>
<td>Panama</td>
<td></td>
<td>250 – 500 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowland mixed dipterocarp forest</td>
<td>Sarawak, Borneo</td>
<td>50 h</td>
<td>10 h</td>
<td>84 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular large obstacle coverage</td>
<td></td>
<td></td>
<td>1.0 o</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Value is median of a range shown in parenthesis # clonal *Eucalyptus grandis × Eucalyptus urophylla*
Table S3 Albedo values

<table>
<thead>
<tr>
<th>Surface</th>
<th>Albedo, α</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water*</td>
<td>0.08</td>
<td>Maidment (1992)</td>
</tr>
<tr>
<td>Desert (bare ground)</td>
<td>0.30</td>
<td>McVicar et al. (2007)</td>
</tr>
<tr>
<td>Semi-desert</td>
<td>0.25</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Tundra</td>
<td>0.20</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Short grass</td>
<td>0.26</td>
<td>Watts & Hancock (1984)</td>
</tr>
<tr>
<td>Pasture (short grass)</td>
<td>0.26</td>
<td>McVicar et al. (2007), Douglas et al. (2009)</td>
</tr>
<tr>
<td>Reference (short) crop</td>
<td>0.23</td>
<td>Allen et al. (1998, page 51)</td>
</tr>
<tr>
<td>Long grass (1 m)</td>
<td>0.16</td>
<td>Watts & Hancock (1984)</td>
</tr>
<tr>
<td>Irrigated crop</td>
<td>0.18</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Crop/mixed farming</td>
<td>0.20</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Evergreen shrub</td>
<td>0.10</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Deciduous shrub</td>
<td>0.20</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Sparse forest</td>
<td>0.18</td>
<td>McVicar et al. (2007)</td>
</tr>
<tr>
<td>Rain forest</td>
<td>0.15</td>
<td>Dingman (1992)</td>
</tr>
<tr>
<td>Eucalypts</td>
<td>0.20</td>
<td>Dingman (1992)</td>
</tr>
<tr>
<td>Evergreen needleleaf forest</td>
<td>0.10</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Deciduous needleleaf forest</td>
<td>0.20</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Evergreen broadleaf forest</td>
<td>0.15</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Deciduous broadleaf forest</td>
<td>0.20</td>
<td>Douglas et al. (2009)</td>
</tr>
<tr>
<td>Forest (mixed woodland)</td>
<td>0.15</td>
<td>McVicar et al. (2007), Douglas et al. (2009)</td>
</tr>
<tr>
<td>Urban area</td>
<td>0.25</td>
<td>McVicar et al. (2007)</td>
</tr>
</tbody>
</table>

* Based on Cogley (1979), Jensen (2010, Table 1) provides a table of albedo values for water. Jensen’s table shows that albedo for water has a seasonal pattern being high in winter and low in summer and increases from an average value of 0.065 at the equator to values varying from 0.11 to 0.36 at 60° – 70°N latitude.
Table S4 Median, 10th and 90th percentile monthly evaporation based on data recorded at the 68 Australian AWSs for three Penman wind functions, and for FAO-56 Reference Crop and Priestley-Taylor algorithms expressed as a percentage of the Penman (1948) median estimate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>100%</td>
<td>-9.9%</td>
<td>-15.8%</td>
<td>-26.4%</td>
<td>-17.1%</td>
</tr>
<tr>
<td>10th percentile</td>
<td>-63.0%</td>
<td>-67.5%</td>
<td>-72.0%</td>
<td>-74.3%</td>
<td>-75.7%</td>
</tr>
<tr>
<td>90th percentile</td>
<td>57.4%</td>
<td>45.5%</td>
<td>33.4%</td>
<td>22.3%</td>
<td>29.2%</td>
</tr>
</tbody>
</table>

Table S5 Guideline for defining shallow and deep lakes and the methods to estimate lake evaporation

<table>
<thead>
<tr>
<th>Shallow lake without seasonal heat storage analysis</th>
<th>Average depth (m)</th>
<th>Deep lake</th>
<th>Average depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morton recommendations</td>
<td>Morton CRWE</td>
<td>Morton CRLE</td>
<td>1.5</td>
</tr>
<tr>
<td>Seasonal heat storage changes</td>
<td>undefined</td>
<td>For depths less than 1.5 m use CRWE (Morton, 1986, page 385)</td>
<td></td>
</tr>
<tr>
<td>and water advection are not important</td>
<td>undefined</td>
<td>Seasonal heat storage changes and water advection are important</td>
<td></td>
</tr>
<tr>
<td>Deep lakes are considered shallow</td>
<td>undefined</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>if one is interested only in annual or mean annual</td>
<td>undefined</td>
<td>Seasonal heat storage changes and water advection are important</td>
<td></td>
</tr>
<tr>
<td>evaporation (Morton, 1983b, page 84)</td>
<td>undefined</td>
<td>undefined</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations of other authors

<table>
<thead>
<tr>
<th>Shallow lake with seasonal heat storage analysis</th>
<th>Deep lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penman equation can be applied without adjusting for heat storage Monteith (1981, page 9)</td>
<td>less than “…a metre or so…”</td>
</tr>
<tr>
<td>de Bruin (1978, Section 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McJannet et al. (2008b)</th>
<th>1 – 6</th>
<th>McJannet et al. (2008b)</th>
<th>25 - 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finch (2001)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fennessey (2000)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacks et al (1994, page 312)</td>
<td>< 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraedrich et al. (1977, Section 6)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart & Rouse (1976, page 624)</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keijman and Koopmans (1973)</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S6 Mean monthly screened Class-A evaporation pan coefficients for estimating Penman open-water evaporation (1956 wind function) at 68 Australian locations

For each station, the second row of values specifies the number of months used to compute the mean monthly pan coefficients. Asterisk denotes high quality Class-A evaporation pan. nd is no data

<table>
<thead>
<tr>
<th>BOM ref.</th>
<th>Station name</th>
<th>Lat °S</th>
<th>Long °E</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Halls Creek Airport*</td>
<td>18.23</td>
<td>127.66</td>
<td>0.735</td>
<td>0.880</td>
<td>0.753</td>
<td>0.696</td>
<td>0.702</td>
<td>0.711</td>
<td>0.702</td>
<td>0.696</td>
<td>0.671</td>
<td>nd</td>
<td>0.709</td>
<td>0.697</td>
<td>0.723</td>
</tr>
<tr>
<td>3003</td>
<td>Broome Airport*</td>
<td>17.95</td>
<td>122.24</td>
<td>0.822</td>
<td>0.842</td>
<td>0.866</td>
<td>0.816</td>
<td>0.742</td>
<td>0.743</td>
<td>0.768</td>
<td>0.788</td>
<td>0.859</td>
<td>0.897</td>
<td>0.882</td>
<td>0.837</td>
<td>0.822</td>
</tr>
<tr>
<td>7178</td>
<td>Paraburdoo</td>
<td>23.20</td>
<td>117.67</td>
<td>0.607</td>
<td>0.571</td>
<td>0.591</td>
<td>0.614</td>
<td>0.654</td>
<td>0.594</td>
<td>0.644</td>
<td>0.635</td>
<td>0.587</td>
<td>0.608</td>
<td>0.591</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>9021</td>
<td>Perth Airport*</td>
<td>31.93</td>
<td>115.98</td>
<td>0.825</td>
<td>0.821</td>
<td>0.782</td>
<td>0.818</td>
<td>0.827</td>
<td>0.850</td>
<td>0.915</td>
<td>0.984</td>
<td>0.979</td>
<td>0.960</td>
<td>0.903</td>
<td>0.862</td>
<td>0.877</td>
</tr>
<tr>
<td>9034</td>
<td>Perth Reg. Office*</td>
<td>31.96</td>
<td>115.87</td>
<td>0.912</td>
<td>0.866</td>
<td>0.837</td>
<td>0.837</td>
<td>0.818</td>
<td>0.807</td>
<td>0.869</td>
<td>0.931</td>
<td>0.942</td>
<td>0.966</td>
<td>0.942</td>
<td>0.945</td>
<td>0.889</td>
</tr>
<tr>
<td>9538</td>
<td>Dwellingup</td>
<td>32.71</td>
<td>116.06</td>
<td>0.880</td>
<td>0.867</td>
<td>0.864</td>
<td>0.921</td>
<td>0.813</td>
<td>0.789</td>
<td>0.748</td>
<td>0.912</td>
<td>0.933</td>
<td>1.028</td>
<td>0.963</td>
<td>0.923</td>
<td>0.887</td>
</tr>
<tr>
<td>9592</td>
<td>Pemberton</td>
<td>34.45</td>
<td>116.04</td>
<td>0.950</td>
<td>0.941</td>
<td>0.883</td>
<td>0.920</td>
<td>0.981</td>
<td>0.890</td>
<td>nd</td>
<td>nd</td>
<td>0.892</td>
<td>0.980</td>
<td>0.983</td>
<td>0.962</td>
<td>0.938</td>
</tr>
<tr>
<td>9741</td>
<td>Albany Airport*</td>
<td>34.94</td>
<td>117.80</td>
<td>0.827</td>
<td>0.822</td>
<td>0.809</td>
<td>0.856</td>
<td>0.859</td>
<td>0.830</td>
<td>0.882</td>
<td>0.938</td>
<td>0.970</td>
<td>0.987</td>
<td>0.917</td>
<td>0.856</td>
<td>0.879</td>
</tr>
<tr>
<td>13017</td>
<td>Giles Met. Office*</td>
<td>25.03</td>
<td>128.30</td>
<td>0.650</td>
<td>0.656</td>
<td>0.650</td>
<td>0.686</td>
<td>0.727</td>
<td>0.765</td>
<td>0.755</td>
<td>0.747</td>
<td>0.718</td>
<td>0.694</td>
<td>0.678</td>
<td>0.659</td>
<td>0.699</td>
</tr>
<tr>
<td>14015</td>
<td>Darwin Airport*</td>
<td>12.42</td>
<td>130.89</td>
<td>0.775</td>
<td>0.771</td>
<td>0.866</td>
<td>0.855</td>
<td>0.779</td>
<td>0.744</td>
<td>0.766</td>
<td>0.812</td>
<td>0.836</td>
<td>0.853</td>
<td>0.838</td>
<td>0.779</td>
<td>0.806</td>
</tr>
<tr>
<td>14198</td>
<td>Jabiru Airport</td>
<td>12.66</td>
<td>132.89</td>
<td>0.842</td>
<td>0.856</td>
<td>0.827</td>
<td>0.812</td>
<td>0.766</td>
<td>0.709</td>
<td>0.734</td>
<td>0.740</td>
<td>0.732</td>
<td>0.773</td>
<td>0.788</td>
<td>0.848</td>
<td>0.786</td>
</tr>
<tr>
<td>14508</td>
<td>Gove Airport*</td>
<td>12.27</td>
<td>136.82</td>
<td>0.859</td>
<td>0.831</td>
<td>0.899</td>
<td>0.889</td>
<td>0.888</td>
<td>0.863</td>
<td>0.889</td>
<td>0.921</td>
<td>0.935</td>
<td>0.944</td>
<td>0.922</td>
<td>0.864</td>
<td>0.892</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>14513</td>
<td>Wallaby Beach</td>
<td>12.19</td>
<td>136.71</td>
<td></td>
</tr>
<tr>
<td>14612</td>
<td>Larrimah</td>
<td>15.57</td>
<td>133.21</td>
<td></td>
</tr>
<tr>
<td>14703</td>
<td>Centre Island</td>
<td>15.74</td>
<td>136.82</td>
<td></td>
</tr>
<tr>
<td>14704</td>
<td>McArthur River Mine</td>
<td>16.44</td>
<td>136.08</td>
<td></td>
</tr>
<tr>
<td>15135</td>
<td>Tennant Creek Airport*</td>
<td>19.64</td>
<td>134.18</td>
<td></td>
</tr>
<tr>
<td>15590</td>
<td>Alice Springs Airport*</td>
<td>23.80</td>
<td>133.89</td>
<td></td>
</tr>
<tr>
<td>15666</td>
<td>Rabbit Flat</td>
<td>20.18</td>
<td>130.01</td>
<td></td>
</tr>
<tr>
<td>16001</td>
<td>Woomera Aerodrome*</td>
<td>31.16</td>
<td>136.81</td>
<td></td>
</tr>
<tr>
<td>17043</td>
<td>Oodnadatta Airport</td>
<td>27.56</td>
<td>135.45</td>
<td></td>
</tr>
<tr>
<td>18012</td>
<td>Ceduna AMO*</td>
<td>32.13</td>
<td>133.70</td>
<td></td>
</tr>
<tr>
<td>23034</td>
<td>Adelaide Airport</td>
<td>34.95</td>
<td>138.52</td>
<td></td>
</tr>
<tr>
<td>23090</td>
<td>Adelaide (Kent Town)*</td>
<td>34.92</td>
<td>138.62</td>
<td></td>
</tr>
<tr>
<td>23321</td>
<td>Nuriootpa Comparison*</td>
<td>34.48</td>
<td>139.00</td>
<td></td>
</tr>
<tr>
<td>23373</td>
<td>Nuriootpa Viticultural*</td>
<td>34.48</td>
<td>139.01</td>
<td></td>
</tr>
<tr>
<td>24024</td>
<td>Loxton Res. Centre</td>
<td>34.44</td>
<td>140.60</td>
<td></td>
</tr>
</tbody>
</table>

Comparison: 18 20 21 22 24 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
<th>Table Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Gambier Aero*</td>
<td>37.75</td>
<td>0.920 0.907 0.876 0.918 0.949 1.013 1.031 1.024 1.039 1.044 0.991 0.945 0.972</td>
</tr>
<tr>
<td>Weipa Aero*</td>
<td>12.68</td>
<td>0.774 0.838 0.861 0.890 0.844 0.779 0.788 0.794 0.823 0.836 0.856 0.831 0.826</td>
</tr>
<tr>
<td>Mount Isa Mine</td>
<td>20.74</td>
<td>0.689 0.720 0.679 0.674 0.662 0.705 0.710 0.705 0.674 0.664 0.674 0.686 0.687</td>
</tr>
<tr>
<td>Mount Isa Aero*</td>
<td>20.68</td>
<td>0.745 0.752 0.729 0.706 0.726 0.736 0.749 0.745 0.723 0.709 0.718 0.727 0.730</td>
</tr>
<tr>
<td>Cairns Aero*</td>
<td>16.87</td>
<td>0.851 0.835 0.858 0.873 0.838 0.835 0.831 0.857 0.847 0.850 0.835 0.832 0.845</td>
</tr>
<tr>
<td>Townsville Aero*</td>
<td>19.25</td>
<td>0.824 0.821 0.812 0.773 0.771 0.762 0.777 0.794 0.809 0.814 0.812 0.827 0.800</td>
</tr>
<tr>
<td>Brisbane Aero</td>
<td>27.42</td>
<td>0.848 0.822 0.830 0.836 0.858 0.857 0.860 0.844 0.859 0.848 0.845 0.841 0.846</td>
</tr>
<tr>
<td>Brian Pastures*</td>
<td>25.66</td>
<td>0.773 0.794 0.786 0.772 0.752 0.738 0.755 0.787 0.806 0.813 0.806 0.772 0.779</td>
</tr>
<tr>
<td>Brisbane Aero</td>
<td>27.39</td>
<td>0.857 0.856 0.847 0.858 0.856 0.849 0.856 0.885 0.880 0.863 0.877 0.844 0.861</td>
</tr>
<tr>
<td>Cobar Aero*</td>
<td>31.48</td>
<td>0.736 0.727 0.725 0.765 0.802 0.863 0.882 0.873 0.843 0.815 0.768 0.732 0.794</td>
</tr>
<tr>
<td>Moree Comparison*</td>
<td>29.48</td>
<td>0.809 0.822 0.795 0.813 0.846 0.878 0.915 0.946 0.899 0.866 0.843 0.811 0.854</td>
</tr>
<tr>
<td>Moree Aero*</td>
<td>29.49</td>
<td>0.791 0.783 0.786 0.777 0.797 0.862 0.886 0.883 0.867 0.838 0.811 0.788 0.822</td>
</tr>
<tr>
<td>Gunnedah Res. Centre*</td>
<td>31.03</td>
<td>0.713 0.687 0.708 0.675 0.667 0.649 0.558 nd nd nd 0.763 0.710 0.681</td>
</tr>
<tr>
<td>Tamworth Airport</td>
<td>31.09</td>
<td>0.806 0.795 0.809 0.802 0.858 0.904 0.912 0.962 0.896 0.876 0.863 0.830 0.859</td>
</tr>
<tr>
<td>Inverell Res. Centre</td>
<td>29.78</td>
<td>0.873 0.857 0.837 0.871 0.810 0.783 0.799 0.888 0.908 0.906 0.921 0.879 0.861</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Latitude</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>59040</td>
<td>Coffs Harbour MO*</td>
<td>30.31</td>
</tr>
<tr>
<td>61078</td>
<td>Williamtown RAAF*</td>
<td>32.79</td>
</tr>
<tr>
<td>61089</td>
<td>Scone SCS*</td>
<td>32.06</td>
</tr>
<tr>
<td>66037</td>
<td>Sydney Airport AMO*</td>
<td>33.95</td>
</tr>
<tr>
<td>67033</td>
<td>Richmond RAAF</td>
<td>33.60</td>
</tr>
<tr>
<td>68076</td>
<td>Nowra RAN Air Station</td>
<td>34.94</td>
</tr>
<tr>
<td>70014</td>
<td>Canberra Airport Comparison*</td>
<td>35.30</td>
</tr>
<tr>
<td>70015</td>
<td>Canberra Forestry</td>
<td>35.30</td>
</tr>
<tr>
<td>72060</td>
<td>Khancoban SMHEA</td>
<td>36.23</td>
</tr>
<tr>
<td>72150</td>
<td>Wagga Wagga AMO*</td>
<td>35.16</td>
</tr>
<tr>
<td>76031</td>
<td>Mildura Airport*</td>
<td>34.24</td>
</tr>
<tr>
<td>82039</td>
<td>Rutherglen Research*</td>
<td>36.10</td>
</tr>
<tr>
<td>85072</td>
<td>East Sale Airport*</td>
<td>38.12</td>
</tr>
<tr>
<td>85103</td>
<td>Yallourn SEC</td>
<td>38.19</td>
</tr>
<tr>
<td>86282</td>
<td>Melbourne Airport</td>
<td>37.67</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Latitude</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>87031</td>
<td>Laverton RAAF</td>
<td>37.86</td>
</tr>
<tr>
<td>88023</td>
<td>Lake Eildon*</td>
<td>37.23</td>
</tr>
<tr>
<td>90103</td>
<td>Hamilton Res. Station</td>
<td>37.83</td>
</tr>
<tr>
<td>91104</td>
<td>Launceston Airport Companion*</td>
<td>41.54</td>
</tr>
<tr>
<td>91219</td>
<td>Scottsdale</td>
<td>41.17</td>
</tr>
<tr>
<td>92038</td>
<td>Swansea Post Office</td>
<td>42.12</td>
</tr>
<tr>
<td>94008</td>
<td>Hobart Airport</td>
<td>42.83</td>
</tr>
<tr>
<td>94029</td>
<td>Hobart (Ellerslie Road)</td>
<td>42.89</td>
</tr>
<tr>
<td>94069</td>
<td>Grove (Comparison)*</td>
<td>42.98</td>
</tr>
<tr>
<td>96033</td>
<td>Liawenee</td>
<td>41.90</td>
</tr>
<tr>
<td>97053</td>
<td>Strathgordon Village*</td>
<td>42.77</td>
</tr>
</tbody>
</table>
Table S7 Comparison of equations to estimate evaporation from a lake covered with vegetation
(Adv. and Disadv. are abbreviations for advantage and disadvantage, respectively.)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Application</th>
<th>Penman (Section 2.1.1)</th>
<th>Penman-Monteith (Section 2.1.2)</th>
<th>Weighted Penman-Monteith (Equation S5.30)</th>
<th>Shuttleworth-Wallace (Equation S5.22)</th>
<th>Priestley-Taylor (Section 2.1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table III</td>
<td>Bowen Ratio</td>
<td></td>
<td>0.75 (1.21)#</td>
<td>1.10 (1.41)</td>
<td>1.35 (1.65)</td>
<td></td>
</tr>
<tr>
<td>Abtew & Obeysekera (1995)</td>
<td>South Florida</td>
<td>The two coefficients in the wind function were found by calibration</td>
<td>Monteith (1965) r_a from Equation S5.3. r_s varied from 25 s m$^{-1}$ during high ET season and 90 s m$^{-1}$ for rest of year.</td>
<td></td>
<td></td>
<td>$\alpha = 1.18$ by calibration</td>
</tr>
<tr>
<td>Figures 7 to 9</td>
<td>Lysimeter within wetland complex</td>
<td></td>
<td>P=0.03+1.01Meas (see = 0.57 mm day$^{-1}$)</td>
<td>PM=1.17+0.75Meas (see = 0.39 mm day$^{-1}$)</td>
<td></td>
<td>PT=1.15 +070Meas (see = 0.53 mm day$^{-1}$)</td>
</tr>
<tr>
<td>Souch et al. (1998)</td>
<td>Indiana, USA Undisturbed site</td>
<td>Penman modified by Shuttleworth (1992)</td>
<td>r_a from Shuttleworth (1992, Equation 4.2.25); $r_s = 0$ for standing water & $r_s = 5$ s m$^{-1}$ for vegetation</td>
<td></td>
<td>Assumed vapour pressure deficits depressed, $\alpha = 1$</td>
<td></td>
</tr>
<tr>
<td>Table 3</td>
<td>Eddy correlation</td>
<td></td>
<td>1.03 (0.67)</td>
<td>0.98 (0.44)</td>
<td></td>
<td>1.03 (0.67)</td>
</tr>
<tr>
<td>Bidlake (2000)</td>
<td>Wetland in Oregon, USA (semi-arid)</td>
<td></td>
<td>Several calibrations were based on r_s. Chosen best option</td>
<td></td>
<td></td>
<td>Calibrated with α overall <1</td>
</tr>
<tr>
<td>Eddy correlation</td>
<td>0.98* (1.04)</td>
<td>0.92* (1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lott & Hunt (2001) Table 2</td>
<td>Adoption Dunne & Leopold (1978) to compute (E_a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin, USA</td>
<td>Lysimeter and water table fluctuations</td>
<td>Natural wetland 0.70 Constructed wetland 1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacobs et al. (2002) Table 3</td>
<td>Highland marsh Florida, USA</td>
<td>Penman (1956) (r_a = \text{Monin-Obukhov similarity for neutral conditions})</td>
<td>(\alpha = 1.26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eddy correlation</td>
<td>1.31 (1.83)</td>
<td>1.14 (1.62)</td>
<td>1.39 (1.59)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drexler et at. (2004)</td>
<td>Adv: Minimal data Disadv: does not account for (r_s)</td>
<td>Adv: Minimal data, accounts for (r_s) Disadv: Can’t handle mixed vegetation, hence (r_a) and (r_s) difficult to estimate</td>
<td>Adv: can handle (r_a) and (r_s) for different surfaces including standing water Disadv: Does not handle standing water Disadv: No wind component nor (r)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value is ratio of mean model estimate to mean measured estimate. Values in parentheses are root mean square error in mm day\(^{-1}\). * Value is based on the slope of the regression between the model and the measured values.
Table S8 Measured values of Priestley-Taylor coefficient (α_{PT})

(Parly adapted from Flint and Childs (1991) and Fisher et al. (2005))

<table>
<thead>
<tr>
<th>α_{PT}</th>
<th>Surface</th>
<th>Daily (24 hr) or day-time (day-light hour)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57</td>
<td>Strongly advective conditions</td>
<td>na</td>
<td>Jury and Tanner (1975)</td>
</tr>
<tr>
<td>1.29</td>
<td>Grass (soil at field capacity)</td>
<td>daily</td>
<td>Mukammal and Neumann (1977)</td>
</tr>
<tr>
<td>1.27</td>
<td>Irrigated ryegrass</td>
<td>daily</td>
<td>Davies and Allen (1973)</td>
</tr>
<tr>
<td>1.26</td>
<td>Saturated surface</td>
<td>daily</td>
<td>Priestley and Taylor (1972)</td>
</tr>
<tr>
<td>1.26</td>
<td>Open-surface water</td>
<td>daily</td>
<td>Priestley and Taylor (1972)</td>
</tr>
<tr>
<td>1.26</td>
<td>Wet meadow</td>
<td>daily</td>
<td>Stewart and Rouse (1977)</td>
</tr>
<tr>
<td>1.18</td>
<td>Wet Douglas-fir forest</td>
<td>daily</td>
<td>McNaughton and Black (1973)</td>
</tr>
<tr>
<td>1.12</td>
<td>Short grass</td>
<td>day-time</td>
<td>De Bruin and Holtslag (1982)</td>
</tr>
<tr>
<td>1.09</td>
<td>Boreal broad-leaf deciduous N = 1</td>
<td>daily</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>1.05</td>
<td>Douglas-fir forest</td>
<td>daily</td>
<td>McNaughton and Black (1973)</td>
</tr>
<tr>
<td>1.04</td>
<td>Bare soil surface</td>
<td>day-time</td>
<td>Barton (1979)</td>
</tr>
<tr>
<td>0.90</td>
<td>Mixed reforestation (water limited)</td>
<td>daily</td>
<td>Flint and Childs (1991)</td>
</tr>
<tr>
<td>0.87</td>
<td>Ponderosa pine (water limited)</td>
<td>day-time</td>
<td>Fisher et al. (2005)</td>
</tr>
<tr>
<td>0.85</td>
<td>Temperate broad-leaf deciduous N = 9</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>0.84</td>
<td>Douglas-fir forest (unthinned)</td>
<td>daily</td>
<td>Black (1979)</td>
</tr>
<tr>
<td>0.82</td>
<td>Tropical broad-leaf evergreen N = 7</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>0.80</td>
<td>Douglas-fir forest (thinned)</td>
<td>daily</td>
<td>Black (1979)</td>
</tr>
<tr>
<td>0.76</td>
<td>Temperate broad-leaf evergreen N = 5</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>0.73</td>
<td>Douglas-fir forest</td>
<td>day-time</td>
<td>Giles et al. (1984)</td>
</tr>
<tr>
<td>0.72</td>
<td>Spruce forest</td>
<td>day-time</td>
<td>Shuttleworth and Calder (1979)</td>
</tr>
<tr>
<td>0.65</td>
<td>Temperate coniferous evergreen N = 35</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>0.55</td>
<td>Boreal coniferous evergreen N = 8</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
<tr>
<td>0.53</td>
<td>Boreal coniferous deciduous N = 2</td>
<td>day-time</td>
<td>Komatsu (2005)</td>
</tr>
</tbody>
</table>

na: not known; N is the number of experimental sites
Table S9 Effect of type and length fetch, wind speed and humidity on Class-A pan coefficients without bird-guard*

<table>
<thead>
<tr>
<th>Wind</th>
<th>Fetch length (m)</th>
<th>Green vegetated fetch in a dry area</th>
<th>Dry fetch in a green vegetated area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low humidity < 40%</td>
<td>High humidity > 70%</td>
</tr>
<tr>
<td>Light < 2 m s⁻¹</td>
<td>10</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td>Strong 5 - 8 m s⁻¹</td>
<td>10</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.60</td>
<td>0.75</td>
</tr>
</tbody>
</table>

*Results were extracted from Allen et al. (1998, Table 5)
Table S10 Published references listing annual Class-A pan coefficients based on the Penman equation with wind functions of Penman (1948) and Penman (1956), Reference Crop equation and Priestley-Taylor equation

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Number of sites</th>
<th>Time-step</th>
<th>Penman (1948)</th>
<th>Penman (1956)</th>
<th>Reference Crop</th>
<th>Priestley-Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks (1982)</td>
<td>Callide Dam, Queensland</td>
<td>1</td>
<td>M</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleming et al. (1989)</td>
<td>South Lake Wyangan, Vic,</td>
<td>1</td>
<td>M</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiew et al. (1995)</td>
<td>Australia</td>
<td>16</td>
<td>D & M</td>
<td>0.67 (FAO 24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen et al. (2002)</td>
<td></td>
<td>1</td>
<td>M</td>
<td>1.03</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients adjusted to a screened pan coefficient

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Number of sites</th>
<th>Time-step</th>
<th>Penman (1948)</th>
<th>Penman (1956)</th>
<th>Reference Crop</th>
<th>Priestley-Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young (1947)*</td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penman (1948)*</td>
<td>Rothamsted, UK</td>
<td>several</td>
<td>6Ds & M</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohler et al. (1955)*</td>
<td></td>
<td></td>
<td></td>
<td>0.64 – 0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbeck (1958)*</td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordenson & Baker (1962)*</td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nimmo (1964)*</td>
<td></td>
<td></td>
<td></td>
<td>0.65– 0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanhill (1969)*</td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen & Crow (1971)*</td>
<td></td>
<td></td>
<td></td>
<td>0.80 – 0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficke (1972)*</td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hounam (1973)*</td>
<td></td>
<td></td>
<td></td>
<td>0.77, 0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuwirth (1973)*</td>
<td></td>
<td></td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoy (1977)*</td>
<td></td>
<td></td>
<td></td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duru (1984)*</td>
<td></td>
<td></td>
<td></td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanhill (2002)</td>
<td>World-wide</td>
<td>18</td>
<td>na</td>
<td>Penman ?? 0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmsen et al. (2003)</td>
<td>Puerto Rico</td>
<td>7</td>
<td>M</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumner & Jacobs (2005)</td>
<td>Florida, USA</td>
<td>1</td>
<td>D</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiβ and Menzel (2008)</td>
<td>Jordon</td>
<td></td>
<td></td>
<td>0.43</td>
<td>(0.24 -0.72)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S11 Monthly Class-A evaporation pan coefficients for selected Australian lakes*

*All pan coefficients are extracted from Hoy and Stephens (1979)

<table>
<thead>
<tr>
<th>Station name</th>
<th>Lat °S</th>
<th>Long °E</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Eucumbene Cataract Reservoir</td>
<td>36.083</td>
<td>148.667</td>
<td>0.82</td>
<td>0.95</td>
<td>0.91</td>
<td>1.03</td>
<td>2.07</td>
<td>2.19</td>
<td>1.65</td>
<td>1.56</td>
<td>0.47</td>
<td>0.47</td>
<td>0.52</td>
<td>0.67</td>
</tr>
<tr>
<td>Manton Reservoir</td>
<td>34.333</td>
<td>150.833</td>
<td>0.98</td>
<td>1.07</td>
<td>1.11</td>
<td>1.14</td>
<td>1.22</td>
<td>1.25</td>
<td>1.12</td>
<td>0.75</td>
<td>0.76</td>
<td>0.80</td>
<td>0.88</td>
<td>0.93</td>
</tr>
<tr>
<td>Mundaring Reservoir</td>
<td>12.833</td>
<td>131.083</td>
<td>1.13</td>
<td>1.09</td>
<td>1.06</td>
<td>1.01</td>
<td>0.94</td>
<td>0.85</td>
<td>0.79</td>
<td>0.75</td>
<td>0.83</td>
<td>0.88</td>
<td>0.91</td>
<td>1.10</td>
</tr>
<tr>
<td>Blue Lagoon Reservoir</td>
<td>31.916</td>
<td>116.166</td>
<td>1.02</td>
<td>1.06</td>
<td>1.12</td>
<td>1.18</td>
<td>1.15</td>
<td>1.18</td>
<td>1.01</td>
<td>0.91</td>
<td>0.81</td>
<td>0.78</td>
<td>0.79</td>
<td>0.94</td>
</tr>
<tr>
<td>Lake Wyangan</td>
<td>38.183</td>
<td>146.366</td>
<td>0.92</td>
<td>0.95</td>
<td>0.94</td>
<td>0.91</td>
<td>0.88</td>
<td>0.88</td>
<td>0.77</td>
<td>0.77</td>
<td>0.94</td>
<td>0.94</td>
<td>1.06</td>
<td>0.96</td>
</tr>
<tr>
<td>Rifle Creek reservoir</td>
<td>34.283</td>
<td>146.033</td>
<td>0.86</td>
<td>0.86</td>
<td>0.87</td>
<td>0.82</td>
<td>0.78</td>
<td>0.69</td>
<td>0.66</td>
<td>0.68</td>
<td>0.82</td>
<td>0.97</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>20.950</td>
<td>139.583</td>
<td>0.76</td>
<td>0.66</td>
<td>0.79</td>
<td>0.82</td>
<td>0.66</td>
<td>0.56</td>
<td>0.52</td>
<td>0.52</td>
<td>0.57</td>
<td>0.65</td>
<td>0.65</td>
<td>0.83</td>
</tr>
<tr>
<td>Station name</td>
<td>Lat °S</td>
<td>Long °E</td>
<td>Annual pan coefficient</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Lake Menindee</td>
<td>32.333</td>
<td>142.333</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Lake Pamamaroo</td>
<td>32.300</td>
<td>142.466</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Lake Cawdilla</td>
<td>32.466</td>
<td>142.233</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Stephens Creek Reservoir</td>
<td>31.833</td>
<td>141.500</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Lake Albacutya</td>
<td>35.750</td>
<td>141.966</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Lake Hindmarsh</td>
<td>36.083</td>
<td>141.916</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Lake Eucumbene</td>
<td>36.083</td>
<td>148.667</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Cataract Reservoir</td>
<td>34.333</td>
<td>150.833</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Manton Reservoir</td>
<td>12.833</td>
<td>131.083</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Mundaring Reservoir</td>
<td>31.916</td>
<td>116.166</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Blue Lagoon</td>
<td>38.183</td>
<td>146.366</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Lake Wyangan South</td>
<td>34.283</td>
<td>146.033</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Rifle Creek Reservoir</td>
<td>20.950</td>
<td>139.583</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Lake Albert</td>
<td>35.633</td>
<td>139.333</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Callide Dam</td>
<td>24.400</td>
<td>150.617</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Lake Alexandrina</td>
<td>35.750</td>
<td>139.283</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

*All pan coefficients are extracted from Hoy and Stephens (1979) except for Callide Dam and Lake Alexandrina which are taken from Weeks (1982) and Kotwicki (1994, Table 2) respectively.
Table S13 Comparison of annual estimates of evaporation (mm year\(^{-1}\)) at six Australian locations by 13 daily and monthly models plus Class-A pan and mean annual rainfall for period January 1979 to March 2010*. (P56: Penman 1956; PT: Priestley-Taylor; Ma: Makkink; FAO56 RC: FAO-56 Reference Crop; BC: Blaney-Criddle; HS: Hargreaves-Samani; mod H: modified Hargreaves; Tu: Turc; Mo: Morton CRAE; BS: Brutsaert-Stricker; GG: Granger-Gray; SJ: Szilagyi-Jozsa; Th: Thornthwaite; PP: PenPan (adjusted for bird screen)

<table>
<thead>
<tr>
<th>Location</th>
<th>Daily (D)</th>
<th>Daily ratio</th>
<th>Monthly (M)</th>
<th>M to D ratio</th>
<th>Class-A pan</th>
</tr>
</thead>
<tbody>
<tr>
<td>9021 Perth Airport (31.9275°S, 115.9764°E)</td>
<td>Pen56</td>
<td>PT</td>
<td>Ma</td>
<td>FAO56 RC</td>
<td>BC</td>
</tr>
<tr>
<td>Rain: 731 mm</td>
<td>1908</td>
<td>1609</td>
<td>1123</td>
<td>1567</td>
<td>1182</td>
</tr>
<tr>
<td>Daily ratio</td>
<td>1.00</td>
<td>0.84</td>
<td>0.59</td>
<td>1.00</td>
<td>0.75</td>
</tr>
<tr>
<td>Monthly (M)</td>
<td>1908</td>
<td>1626</td>
<td>1126</td>
<td>1571</td>
<td>1072</td>
</tr>
<tr>
<td>M to D ratio</td>
<td>1.000</td>
<td>1.011</td>
<td>1.003</td>
<td>1.003</td>
<td>0.907</td>
</tr>
<tr>
<td>14015 Darwin Airport (12.4239°S, 130.8925°E) Rain: 1777 mm</td>
<td>Daily (D)</td>
<td>2240</td>
<td>2195</td>
<td>1382</td>
<td>1823</td>
</tr>
<tr>
<td>Daily ratio</td>
<td>1.00</td>
<td>0.98</td>
<td>0.62</td>
<td>1.00</td>
<td>0.73</td>
</tr>
<tr>
<td>Monthly (M)</td>
<td>2238</td>
<td>2200</td>
<td>1381</td>
<td>1821</td>
<td>1238</td>
</tr>
<tr>
<td>M to D ratio</td>
<td>0.999</td>
<td>1.002</td>
<td>0.999</td>
<td>0.999</td>
<td>0.929</td>
</tr>
<tr>
<td>15590 Alice Springs Airport (23.7951°S, 133.8890°E) Rain: 279 mm</td>
<td>Daily (D)</td>
<td>2299</td>
<td>1785</td>
<td>1321</td>
<td>2012</td>
</tr>
<tr>
<td>Daily ratio</td>
<td>1.00</td>
<td>0.78</td>
<td>0.57</td>
<td>1.00</td>
<td>0.85</td>
</tr>
<tr>
<td>Monthly (M)</td>
<td>2313</td>
<td>1814</td>
<td>1326</td>
<td>2031</td>
<td>1573</td>
</tr>
<tr>
<td>M to D ratio</td>
<td>1.006</td>
<td>1.016</td>
<td>1.004</td>
<td>1.009</td>
<td>0.924</td>
</tr>
<tr>
<td>40842</td>
<td>Daily</td>
<td>1819</td>
<td>1709</td>
<td>1130</td>
<td>1427</td>
</tr>
</tbody>
</table>
All annual estimates are based on the sum of the average monthly values for the concurrent period of observation at each station.
Figure S1 Location of the 68 Automatic Weather Stations and Class-A evaporation pans (of which 39 pans are high quality) used in the analyses

Figure S2 Plot showing Priestley-Taylor pan coefficients against mean annual unscreened Class-A pan evaporation based on six years of climate station data in Jordon (Weiβ and Menzel, 2008)
Figure S3 Comparison of monthly PenPan evaporation and Class-A pan evaporation for 68 Australian climate stations

$y = 0.970x + 18.4$

$R^2 = 0.965$