Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 6
Hydrol. Earth Syst. Sci., 17, 2233–2246, 2013
https://doi.org/10.5194/hess-17-2233-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 2233–2246, 2013
https://doi.org/10.5194/hess-17-2233-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jun 2013

Research article | 19 Jun 2013

An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India

P. D. Wagner1, S. Kumar2, and K. Schneider1 P. D. Wagner et al.
  • 1Hydrogeography and Climatology Research Group, Institute of Geography, University of Cologne, Köln, Germany
  • 2Institute of Environment Education & Research, Bharati Vidyapeeth University, Pune, India

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three Rivers catchment multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other out. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.

Publications Copernicus
Download
Citation