Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 7
Hydrol. Earth Syst. Sci., 17, 2845–2857, 2013
https://doi.org/10.5194/hess-17-2845-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 2845–2857, 2013
https://doi.org/10.5194/hess-17-2845-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jul 2013

Research article | 22 Jul 2013

Disinformative data in large-scale hydrological modelling

A. Kauffeldt1, S. Halldin1, A. Rodhe1, C.-Y. Xu2,1, and I. K. Westerberg4,3,1 A. Kauffeldt et al.
  • 1Department of Earth Sciences, Uppsala University, Uppsala, Sweden
  • 2Department of Geosciences, University of Oslo, Oslo, Norway
  • 3IVL Swedish Environmental Research Institute, Stockholm, Sweden
  • 4Department of Civil Engineering, University of Bristol, Bristol, UK

Abstract. Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i) basin areas for different hydrographic datasets, and (ii) between climate data (precipitation and potential evaporation) and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i) most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii) basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii) the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent model simulations.

Publications Copernicus
Download
Citation