Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 8
Hydrol. Earth Syst. Sci., 17, 3235–3244, 2013
https://doi.org/10.5194/hess-17-3235-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Predictions under change: water, earth, and biota in the anthropocene...

Hydrol. Earth Syst. Sci., 17, 3235–3244, 2013
https://doi.org/10.5194/hess-17-3235-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 15 Aug 2013

Review article | 15 Aug 2013

Towards understanding the dynamic behaviour of floodplains as human-water systems

G. Di Baldassarre1,*, M. Kooy1, J. S. Kemerink1, and L. Brandimarte1 G. Di Baldassarre et al.
  • 1UNESCO-IHE Institute for Water Education, Delft, the Netherlands
  • *Invited contribution by G. Di Baldassarre, recipient of the EGU Division Outstanding Young Scientists Award 2012.

Abstract. This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in deltas and floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in deltas and floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.

Publications Copernicus
Download
Citation