Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Hydrol. Earth Syst. Sci., 17, 3437-3453, 2013
https://doi.org/10.5194/hess-17-3437-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
06 Sep 2013
Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach
N. P. Unland1,2, I. Cartwright1,2, M. S. Andersen2,3, G. C. Rau2,3, J. Reed1, B. S. Gilfedder1,2, A. P. Atkinson1,2, and H. Hofmann1,2 1School of Geosciences, Monash University, Clayton, Vic. 3800, Australia
2National Centre for Groundwater Research and Training, G.P.O. Box 2100, Flinders University, Adelaide, SA 5001, Australia
3Connected Waters Initiative Research Centre (CWI), School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2093, Australia
Abstract. The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day−1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day−1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day−1) due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).

Citation: Unland, N. P., Cartwright, I., Andersen, M. S., Rau, G. C., Reed, J., Gilfedder, B. S., Atkinson, A. P., and Hofmann, H.: Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach, Hydrol. Earth Syst. Sci., 17, 3437-3453, https://doi.org/10.5194/hess-17-3437-2013, 2013.
Publications Copernicus
Download
Share