Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 10
Hydrol. Earth Syst. Sci., 17, 3827–3839, 2013
https://doi.org/10.5194/hess-17-3827-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 3827–3839, 2013
https://doi.org/10.5194/hess-17-3827-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Oct 2013

Research article | 08 Oct 2013

Subsurface release and transport of dissolved carbon in a discontinuous permafrost region

E. J. Jantze1,2, S. W. Lyon1,2, and G. Destouni1,2 E. J. Jantze et al.
  • 1Department of Physical Geography and Quaternary Geology, Stockholm University, 10691 Stockholm, Sweden
  • 2Bert Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden

Abstract. Subsurface hydrological flow pathways and advection rates through the landscape affect the quantity and timing of hydrological transport of dissolved carbon. This study investigates hydrological carbon transport through the subsurface to streams and how it is affected by the distribution of subsurface hydrological pathways and travel times through the landscape. We develop a consistent mechanistic, pathway- and travel time-based modeling approach for release and transport of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC). The model implications are tested against observations in the subarctic Abiskojokken catchment in northernmost Sweden (68°21' N, 18°49' E) as a field case example of a discontinuous permafrost region. The results show: (a) For DOC, both concentration and load are essentially flow-independent because their dynamics are instead dominated by the annual renewal and depletion. Specifically, the flow independence is the result of the small characteristic DOC respiration-dissolution time scale, in the range of 1 yr, relative to the average travel time of water through the subsurface to the stream. (b) For DIC, the load is highly flow-dependent due to the large characteristic weathering-dissolution time, much larger than 1 yr, relative to the average subsurface water travel time to the stream. This rate relation keeps the DIC concentration essentially flow-independent, and thereby less fluctuating in time than the DIC load.

Publications Copernicus
Download
Citation