Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 10
Hydrol. Earth Syst. Sci., 17, 3921–3936, 2013
https://doi.org/10.5194/hess-17-3921-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Precipitation uncertainty and variability: observations, ensemble...

Hydrol. Earth Syst. Sci., 17, 3921–3936, 2013
https://doi.org/10.5194/hess-17-3921-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Oct 2013

Research article | 15 Oct 2013

Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations

M. Ménégoz, H. Gallée, and H. W. Jacobi M. Ménégoz et al.
  • CNRS and UJF Grenoble 1, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE, UMR5183), 38041 Grenoble, France

Abstract. We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period.

Publications Copernicus
Download
Citation