Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 12
Hydrol. Earth Syst. Sci., 17, 4851–4863, 2013
https://doi.org/10.5194/hess-17-4851-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 4851–4863, 2013
https://doi.org/10.5194/hess-17-4851-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2013

Research article | 05 Dec 2013

Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature

F. Beck and A. Bárdossy F. Beck and A. Bárdossy
  • University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Stuttgart, Germany

Abstract. The main source of information on future climate conditions are global circulation models (GCMs). While the various GCMs agree on an increase of surface temperature, the predictions for precipitation exhibit high spread among the models, especially in shorter-than-daily temporal resolution. This paper presents a method to predict regional distributions of the hourly rainfall depth based on daily mean sea level pressure and temperature data. It is an indirect downscaling method avoiding uncertain precipitation data from the GCM. It is based on a fuzzy logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th-century run and the scenario A1B run of ECHAM5. For the study region in southwestern Germany ECHAM5 predicts that the summers will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades. However, the results are yet to be confirmed by further \mbox{investigation} based on other GCMs.

Publications Copernicus
Download
Citation