Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 17, issue 2
Hydrol. Earth Syst. Sci., 17, 751–760, 2013
https://doi.org/10.5194/hess-17-751-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 751–760, 2013
https://doi.org/10.5194/hess-17-751-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Feb 2013

Research article | 20 Feb 2013

Environmental flow assessments in estuaries based on an integrated multi-objective method

T. Sun, J. Xu, and Z. F. Yang T. Sun et al.
  • State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Abstract. An integrated multi-objective method for environmental flow assessments was developed that considered variability of potential habitats as a critical factor in determining how ecosystems respond to hydrological alterations. Responses of habitat area, and the magnitude of those responses as influenced by salinity and water depth, were established and assessed according to fluctuations in river discharge and tidal currents. The requirements of typical migratory species during pivotal life-stage seasons (e.g., reproduction and juvenile growth) and natural flow variations were integrated into the flow-needs assessment. Critical environmental flows for a typical species were defined based on two primary objectives: (1) high level of habitat area and (2) low variability of habitat area. After integrating the water requirements for various species with the maximum acceptable discharge boundary, appropriate temporal limits of environmental flows for ecosystems were recommended. The method was applied in the Yellow River estuary in eastern Shandong province, China. Our results show that, while recommended environmental flows established with variability of potential habitats in mind may not necessarily benefit short-term survival of a typical resident organism on a limited temporal or spatial scale, they may encourage long-term, stable biodiversity and ecosystem health. Thus, short-term ecosystem losses may be compensated by significant long-term gains.

Publications Copernicus
Download
Citation