Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Volume 17, issue 2 | Copyright
Hydrol. Earth Syst. Sci., 17, 851-862, 2013
https://doi.org/10.5194/hess-17-851-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Feb 2013

Research article | 28 Feb 2013

How extreme is extreme? An assessment of daily rainfall distribution tails

S. M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos S. M. Papalexiou et al.
  • Department of Water Resources, Faculty of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 5, 157 80 Zographou, Greece

Abstract. The upper part of a probability distribution, usually known as the tail, governs both the magnitude and the frequency of extreme events. The tail behaviour of all probability distributions may be, loosely speaking, categorized into two families: heavy-tailed and light-tailed distributions, with the latter generating "milder" and less frequent extremes compared to the former. This emphasizes how important for hydrological design it is to assess the tail behaviour correctly. Traditionally, the wet-day daily rainfall has been described by light-tailed distributions like the Gamma distribution, although heavier-tailed distributions have also been proposed and used, e.g., the Lognormal, the Pareto, the Kappa, and other distributions. Here we investigate the distribution tails for daily rainfall by comparing the upper part of empirical distributions of thousands of records with four common theoretical tails: those of the Pareto, Lognormal, Weibull and Gamma distributions. Specifically, we use 15 029 daily rainfall records from around the world with record lengths from 50 to 172 yr. The analysis shows that heavier-tailed distributions are in better agreement with the observed rainfall extremes than the more often used lighter tailed distributions. This result has clear implications on extreme event modelling and engineering design.

Publications Copernicus
Download
Citation
Share