Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 18, issue 6 | Copyright
Hydrol. Earth Syst. Sci., 18, 2021-2032, 2014
https://doi.org/10.5194/hess-18-2021-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Jun 2014

Research article | 03 Jun 2014

A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

T. Euser1, W. M. J. Luxemburg1, C. S. Everson2, M. G. Mengistu2, A. D. Clulow2, and W. G. M. Bastiaanssen1 T. Euser et al.
  • 1Delft University of Technology, Water Resources Section, Stevinweg 1, 2628 CN Delft, the Netherlands
  • 2Centre for Water Resources Research, School of Agriculture Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa

Abstract. The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.

Publications Copernicus
Download
Citation
Share