Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 18, issue 8 | Copyright

Special issue: Predictions under change: water, earth, and biota in the anthropocene...

Hydrol. Earth Syst. Sci., 18, 3239-3258, 2014
https://doi.org/10.5194/hess-18-3239-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Aug 2014

Research article | 27 Aug 2014

Endogenous technological and population change under increasing water scarcity

S. Pande1, M. Ertsen1, and M. Sivapalan2 S. Pande et al.
  • 1Department of Water Management, Delft University of Technology, Delft, the Netherlands
  • 2Department of Civil and Environmental Engineering and Department of Geography, University of Illinois, Urbana-Champaign, IL, USA

Abstract. Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human–water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human–water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions.

While the proposed model is a rather simple model of a coupled human–water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water-scarce basins.

Publications Copernicus
Special issue
Download
Citation
Share