Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 18, 3635-3649, 2014
https://doi.org/10.5194/hess-18-3635-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Review article
17 Sep 2014
A review of droughts on the African continent: a geospatial and long-term perspective
I. Masih1, S. Maskey1, F. E. F. Mussá1,2, and P. Trambauer1 1UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
2Eduardo Mondlane University, Faculty of Engineering, Av. de Moçambique km 1.5, C. Postal 257, Maputo, Mozambique
Abstract. This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900–2013, as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 years. The extreme droughts of 1972–1973, 1983–1984 and 1991–1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999–2002 drought in northwest Africa, 1970s and 1980s droughts in western Africa (Sahel), 2010–2011 drought in eastern Africa (Horn of Africa) and 2001–2003 drought in southern and southeastern Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and equatorial eastern Africa. The complex and highly variant nature of many physical mechanisms such as El Niño–Southern Oscillation (ENSO), sea surface temperature (SST) and land–atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and northern Africa.

However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread droughts in future. This evident challenge is likely to aggravate due to slow progress in drought risk management, increased population and demand for water and degradation of land and environment. Thus, there is a clear need for increased and integrated efforts in drought mitigation to reduce the negative impacts of droughts anticipated in the future.


Citation: Masih, I., Maskey, S., Mussá, F. E. F., and Trambauer, P.: A review of droughts on the African continent: a geospatial and long-term perspective, Hydrol. Earth Syst. Sci., 18, 3635-3649, https://doi.org/10.5194/hess-18-3635-2014, 2014.
Publications Copernicus
Download
Share