Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Volume 18, issue 10
Hydrol. Earth Syst. Sci., 18, 4101–4112, 2014
https://doi.org/10.5194/hess-18-4101-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 18, 4101–4112, 2014
https://doi.org/10.5194/hess-18-4101-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Oct 2014

Research article | 15 Oct 2014

Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC

J. Yang1, F. Castelli2, and Y. Chen1 J. Yang et al.
  • 1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, 830011, China
  • 2Department of Civil and Environmental Engineering, University of Florence, Italy

Abstract. Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ε-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder–Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash–Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more insight into parameter sensitivity and the conflicting characteristics of these objective functions. Multiobjective sensitivity analysis and optimization provide an alternative way for future MOBIDIC modeling.

Publications Copernicus
Download
Citation