Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
  • CiteScore value: 4.94 CiteScore
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 18, issue 10 | Copyright
Hydrol. Earth Syst. Sci., 18, 4153-4168, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Oct 2014

Research article | 17 Oct 2014

Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations

H. Cai1, H. H. G. Savenije1, and C. Jiang2 H. Cai et al.
  • 1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, P.O. Box 5048, 2600 GA Delft, the Netherlands
  • 2School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou, 225127, China

Abstract. As the tidal wave propagates into an estuary, the tidally averaged water level tends to rise in landward direction due to the density difference between saline and fresh water and the asymmetry of the friction. The effect of friction on the residual slope is even more remarkable when accounting for fresh water discharge. In this study, we investigate the influence of river discharge on tidal wave propagation in the Yangtze estuary with specific attention to residual water level slope. This is done by using a one-dimensional analytical model for tidal hydrodynamics accounting for the residual water level. We demonstrate the importance of the residual slope on tidal dynamics and use it to improve the prediction of the tidal propagation in estuaries (i.e. tidal damping, velocity amplitude, wave celerity and phase lag), especially when the influence of river discharge is significant. Finally, we develop a new inverse analytical approach for estimating fresh water discharge on the basis of tidal water level observations along the estuary, which can be used as a tool to obtain information on the river discharge that is otherwise difficult to measure in the tidal region.

Publications Copernicus