Articles | Volume 18, issue 11
https://doi.org/10.5194/hess-18-4403-2014
https://doi.org/10.5194/hess-18-4403-2014
Comment/reply
 | 
05 Nov 2014
Comment/reply |  | 05 Nov 2014

Comment on "Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements" by Lhomme et al. (2014)

W. J. Shuttleworth

Related authors

Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014,https://doi.org/10.5194/hess-18-4363-2014, 2014
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013,https://doi.org/10.5194/hess-17-3205-2013, 2013

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Theory development
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022,https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Yongwei Liu, Yuanbo Liu, Wen Wang, Han Zhou, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 3825–3845, https://doi.org/10.5194/hess-26-3825-2022,https://doi.org/10.5194/hess-26-3825-2022, 2022
Short summary
Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022,https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Dynamical forcings in heavy precipitation events over Italy: lessons from the HyMeX SOP1 campaign
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022,https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Irrig. Drainage Paper, 56, Rome, Italy: UN Food and Agriculture Organization, 1998.
Doorenbos, J. and Pruitt. W. O.: Crop water requirements, Irrig. Drainage Paper 24, Rome, Italy: United Nations Food and Agriculture Organization, 1977.
Lhomme, J. P., Boudhina, N., and Masmoudi, M. M.: Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements, Hydrol. Earth Syst. Sci. Discuss., 11, 4217–4233, https://doi.org/10.5194/hessd-11-4217-2014, 2014.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965
Penman, H. L.: Natural evaporation from open water, bare soil, and grass, Proc. Royal Soc. London, A193, 120–145, 1948.
Short summary
This paper explains the Matt-Shuttleworth approach clearly, simply and concisely. It shows how this approach can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community considered it preferable to use the Penman-Monteith equation to estimate crop water requirements directly for all crops, this could now be done using the Matt-Shuttleworth approach.