Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 18, issue 2
Hydrol. Earth Syst. Sci., 18, 875–892, 2014
https://doi.org/10.5194/hess-18-875-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Hillslope hydrological modelling for landslides prediction

Hydrol. Earth Syst. Sci., 18, 875–892, 2014
https://doi.org/10.5194/hess-18-875-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Feb 2014

Research article | 28 Feb 2014

True colors – experimental identification of hydrological processes at a hillslope prone to slide

P. Schneider1, S. Pool1, L. Strouhal2,1, and J. Seibert3,1 P. Schneider et al.
  • 1Department of Geography, University of Zurich, Zurich, Switzerland
  • 2Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic
  • 3Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Abstract. This study investigated runoff formation processes of a pre-alpine hillslope prone to slide. The experimental pasture plot (40 m × 60 m) is located in the northern front range of the Swiss Alps on a 30° steep hillslope (1180 m a.s.l., 1500 + mm annual precipitation). A gleysol (H-Go-Gr) overlies weathered marlstone and conglomerate of subalpine molasse. We conducted sprinkling experiments on a subplot (10 m × 10 m) with variable rainfall intensities. During both experiments fluorescein line-tracer injections into the topsoil, and sodium chloride (NaCl) injections into the sprinkling water were used to monitor flow velocities in the soil. The observed flow velocities for fluorescein in the soil were 1.2 and 1.4 × 10−3 m s−1. The NaCl breakthrough occurred almost simultaneously in all monitored discharge levels (0.05, 0.25 and 1.0 m depth), indicating a high-infiltration capacity and efficient drainage of the soil. These initial observations suggested "transmissivity feedback", a form of subsurface stormflow, as the dominant runoff process. However, the results of a brilliant blue dye tracer experiment completely changed our perceptions of the hillslope's hydrological processes. Excavation of the dye-stained soils highlighted the dominance of "organic layer interflow", a form of shallow subsurface stormflow. The dye stained the entire H horizon, vertical soil fractures, and macropores (mostly worm burrows) up to 0.5 m depth. Lateral drainage in the subsoil or at the soil–bedrock interface was not observed, and thus was limited to the organic topsoil. In the context of shallow landslides, the subsoil (Go/Gr) acted as an infiltration and exfiltration barrier, which produced significant lateral saturated drainage in the topsoil (H) and possibly a confined aquifer in the bedrock.

Publications Copernicus
Download
Citation