Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 3
Hydrol. Earth Syst. Sci., 19, 1125-1139, 2015
https://doi.org/10.5194/hess-19-1125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 1125-1139, 2015
https://doi.org/10.5194/hess-19-1125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2015

Research article | 02 Mar 2015

Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar

P. Klenk et al.
Viewed  
Total article views: 2,781 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,755 909 117 2,781 131 130 100
  • HTML: 1,755
  • PDF: 909
  • XML: 117
  • Total: 2,781
  • Supplement: 131
  • BibTeX: 130
  • EndNote: 100
Views and downloads (calculated since 04 Nov 2014)
Cumulative views and downloads (calculated since 04 Nov 2014)
Cited  
Saved (final revised paper)  
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 16 Jul 2019
Publications Copernicus
Download
Short summary
In this study, we analyze a set of high-resolution, surface-based, 2-D ground-penetrating radar (GPR) observations of artificially induced subsurface water dynamics. In particular, we place close scrutiny on the evolution of the capillary fringe in a highly dynamic regime with surface-based time-lapse GPR. We thoroughly explain all observed phenomena based on theoretical soil physical considerations and numerical simulations of both subsurface water flow and the expected GPR response.
In this study, we analyze a set of high-resolution, surface-based, 2-D ground-penetrating radar...
Citation