Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 3
Hydrol. Earth Syst. Sci., 19, 1125–1139, 2015
https://doi.org/10.5194/hess-19-1125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 1125–1139, 2015
https://doi.org/10.5194/hess-19-1125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2015

Research article | 02 Mar 2015

Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar

P. Klenk et al.

Related authors

Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017,https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Monitoring infiltration processes with high-resolution surface-based Ground-Penetrating Radar
P. Klenk, S. Jaumann, and K. Roth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12215-2015,https://doi.org/10.5194/hessd-12-12215-2015, 2015
Revised manuscript has not been submitted
Short summary
Identifying a parameterisation of the soil water retention curve from on-ground GPR measurements
A. Dagenbach, J. S. Buchner, P. Klenk, and K. Roth
Hydrol. Earth Syst. Sci., 17, 611–618, https://doi.org/10.5194/hess-17-611-2013,https://doi.org/10.5194/hess-17-611-2013, 2013

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
A proposed method for estimating interception from near-surface soil moisture response
Subodh Acharya, Daniel McLaughlin, David Kaplan, and Matthew J. Cohen
Hydrol. Earth Syst. Sci., 24, 1859–1870, https://doi.org/10.5194/hess-24-1859-2020,https://doi.org/10.5194/hess-24-1859-2020, 2020
Short summary
Controls of fluorescent tracer retention by soils and sediments
Marcus Bork, Jens Lange, Markus Graf-Rosenfellner, and Friederike Lang
Hydrol. Earth Syst. Sci., 24, 977–989, https://doi.org/10.5194/hess-24-977-2020,https://doi.org/10.5194/hess-24-977-2020, 2020
Short summary
Reflection tomography of time-lapse GPR data for studying dynamic unsaturated flow phenomena
Adam R. Mangel, Stephen M. J. Moysey, and John Bradford
Hydrol. Earth Syst. Sci., 24, 159–167, https://doi.org/10.5194/hess-24-159-2020,https://doi.org/10.5194/hess-24-159-2020, 2020
Short summary
Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils
Aaron A. Mohammed, Igor Pavlovskii, Edwin E. Cey, and Masaki Hayashi
Hydrol. Earth Syst. Sci., 23, 5017–5031, https://doi.org/10.5194/hess-23-5017-2019,https://doi.org/10.5194/hess-23-5017-2019, 2019
Short summary
Spatio-temporal relevance and controls of preferential flow at the landscape scale
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019,https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary

Cited articles

Annan, A. P.: GPR Methods for Hydrogeological Studies, in: Hydrogeophysics, vol. 50 of Water Science and Technology Library, edited by Rubin, Y., Hubbard, S. S., and Singh, V., Springer Netherlands, Dordrecht, the Netherlands, 185–213, https://doi.org/10.1007/1-4020-3102-5, 2005.
Bano, M.: Effects of the transition zone above a water table on the reflection of GPR waves, Geophys. Res. Lett., 33, L13309, https://doi.org/10.1029/2006GL026158, 2006.
Bevan, M. J., Endres, A. L., Rudolph, D. L., and Parkin, G.: The non-invasive characterization of pumping-induced dewatering using ground penetrating radar, J. Hydrol., 281, 55–69, https://doi.org/10.1016/S0022-1694(03)00200-2, 2003.
Birchak, J. R., Gardner, C. G., Hipp, J. E., and Victor, J. M.: High dielectric constant microwave probes for sensing soil moisture, Proc. IEEE, 62, 93–98, https://doi.org/10.1109/PROC.1974.9388, 1974.
Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, https://doi.org/10.2136/vzj2009.0173, 2010.
Publications Copernicus
Download
Short summary
In this study, we analyze a set of high-resolution, surface-based, 2-D ground-penetrating radar (GPR) observations of artificially induced subsurface water dynamics. In particular, we place close scrutiny on the evolution of the capillary fringe in a highly dynamic regime with surface-based time-lapse GPR. We thoroughly explain all observed phenomena based on theoretical soil physical considerations and numerical simulations of both subsurface water flow and the expected GPR response.
In this study, we analyze a set of high-resolution, surface-based, 2-D ground-penetrating radar...
Citation