Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 19, issue 3 | Copyright
Hydrol. Earth Syst. Sci., 19, 1371-1384, 2015
https://doi.org/10.5194/hess-19-1371-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Mar 2015

Research article | 12 Mar 2015

Quantifying sensitivity to droughts – an experimental modeling approach

M. Staudinger1, M. Weiler2, and J. Seibert1,3 M. Staudinger et al.
  • 1Department of Geography, University of Zurich, Zurich, Switzerland
  • 2Chair of Hydrology, University of Freiburg, Freiburg, Germany
  • 3Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Abstract. Meteorological droughts like those in summer 2003 or spring 2011 in Europe are expected to become more frequent in the future. Although the spatial extent of these drought events was large, not all regions were affected in the same way. Many catchments reacted strongly to the meteorological droughts showing low levels of streamflow and groundwater, while others hardly reacted. Also, the extent of the hydrological drought for specific catchments was different between these two historical events due to different initial conditions and drought propagation processes. This leads to the important question of how to detect and quantify the sensitivity of a catchment to meteorological droughts. To assess this question we designed hydrological model experiments using a conceptual rainfall-runoff model. Two drought scenarios were constructed by selecting precipitation and temperature observations based on certain criteria: one scenario was a modest but constant progression of drying based on sorting the years of observations according to annual precipitation amounts. The other scenario was a more extreme progression of drying based on selecting months from different years, forming a year with the wettest months through to a year with the driest months. Both scenarios retained the observed intra-annual seasonality for the region. We evaluated the sensitivity of 24 Swiss catchments to these scenarios by analyzing the simulated discharge time series and modeled storage. Mean catchment elevation, slope and area were the main controls on the sensitivity of catchment discharge to precipitation. Generally, catchments at higher elevation and with steeper slopes appeared less sensitive to meteorological droughts than catchments at lower elevations with less steep slopes.

Download & links
Publications Copernicus
Download
Citation
Share