Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 3 | Copyright
Hydrol. Earth Syst. Sci., 19, 1427-1438, 2015
https://doi.org/10.5194/hess-19-1427-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Mar 2015

Research article | 19 Mar 2015

Characterization of sediment layer composition in a shallow lake: from open water zones to reed belt areas

I. Kogelbauer and W. Loiskandl I. Kogelbauer and W. Loiskandl
  • Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria

Abstract. Lake sediment characterization, a prerequisite for the vulnerability assessment of lake ecosystems, demands reliable in situ methods for the characterization of the sediment layer composition. A unified characterization of lake sediments within lake ecotopes (open water, open water patches within the reed, and the reed) is still a challenge. Each ecotope is covered by different classical scientific disciplines (hydrography and terrestrial remote sensing to soil physics) with their specific characterization methods. Recently, a complementary tool that bridges the gap between land and hydrographic surveying methods was introduced. It is a non-acoustic device that combines two soil physical sensors (a capacitive sensor and a cone penetrometer) and GNSS-positioning in a measuring system (CSPS). The CSPS enables rapid in situ delineation of water–mud–consolidated lakebed interfaces. The system was successfully applied across ecotopes at the Neusiedler See, a well-mixed shallow lake rich in fine-grained sediments. The geo-referenced vertical CSPS profiles show ecotope-specific layer composition. The effects of wind-induced turbidity, particle size, and electrical conductivity were analysed. The water–mud interface was precisely delineated at the open water due to a persistent high water content gradient, equivalent to a lutocline. The penetration resistance (PR) for open water showed either a shallow and highly compacted consolidated lakebed or a consolidated lakebed with a partially compacted layer above, while in the reed the PR smoothly increased until reaching the deepest penetration depths.

Publications Copernicus
Download
Citation
Share