Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 3 | Copyright
Hydrol. Earth Syst. Sci., 19, 1547-1559, 2015
https://doi.org/10.5194/hess-19-1547-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Mar 2015

Research article | 26 Mar 2015

Evaluation of high-resolution precipitation analyses using a dense station network

A. Kann et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (06 Feb 2015) by Uwe Ehret
AR by Alexander Kann on behalf of the Authors (17 Feb 2015)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (25 Feb 2015) by Uwe Ehret
RR by Anonymous Referee #1 (10 Mar 2015)
ED: Publish subject to technical corrections (11 Mar 2015) by Uwe Ehret
Publications Copernicus
Download
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1...
Citation
Share