Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 4
Hydrol. Earth Syst. Sci., 19, 2017–2036, 2015
https://doi.org/10.5194/hess-19-2017-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 2017–2036, 2015
https://doi.org/10.5194/hess-19-2017-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Apr 2015

Research article | 24 Apr 2015

Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

R. Guzinski et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (01 Sep 2014) by Hannah Cloke
AR by Radoslaw Guzinski on behalf of the Authors (23 Feb 2015)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (24 Feb 2015) by Hannah Cloke
RR by Anonymous Referee #2 (10 Mar 2015)
ED: Publish subject to minor revisions (Editor review) (18 Mar 2015) by Hannah Cloke
AR by Radoslaw Guzinski on behalf of the Authors (28 Mar 2015)  Author's response    Manuscript
ED: Publish as is (30 Mar 2015) by Hannah Cloke
Publications Copernicus
Download
Short summary
The study compared evapotranspiration (ET) modelled by two remote sensing models and one hydrological model in a river catchment in Denmark. The results show that the spatial patterns of ET produced by the remote sensing models are more similar to each other than to the fluxes produced by the hydrological model. This indicates potential benefits to the hydrological modelling community from integrating spatial information derived through remote sensing methodology into the hydrological models.
The study compared evapotranspiration (ET) modelled by two remote sensing models and one...
Citation