Articles | Volume 19, issue 5
https://doi.org/10.5194/hess-19-2395-2015
https://doi.org/10.5194/hess-19-2395-2015
Research article
 | 
20 May 2015
Research article |  | 20 May 2015

Using variograms to detect and attribute hydrological change

A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield

Related authors

Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison Kay, Nick Dunstone, Gillian Kay, Victoria Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-51,https://doi.org/10.5194/nhess-2024-51, 2024
Preprint under review for NHESS
Short summary
GC Insights: Communicating changes in local climate risk using a physically plausible causal chain
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
EGUsphere, https://doi.org/10.5194/egusphere-2024-289,https://doi.org/10.5194/egusphere-2024-289, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Functional data analysis to quantify and investigate controls on and changes in baseflow seasonality
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202,https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
EGUsphere, https://doi.org/10.5194/egusphere-2023-1306,https://doi.org/10.5194/egusphere-2023-1306, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024,https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024,https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024,https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Stream water sourcing from high elevation snowpack inferred from stable isotopes of water: A novel application of d-excess values
Matthias Sprenger, Rosemary Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-1934,https://doi.org/10.5194/egusphere-2023-1934, 2023
Short summary

Cited articles

Beaulieu, C., Chen, J., and Sarmiento, J. L.: Change-point analysis as a tool to detect abrupt climate variations, Philos. T. Roy. Soc. A, 1962, 1228–1249, 2012.
Bradford, R. and Marsh, T.: Defining a network of benchmark catchments for the UK, Water Maritime Eng., 156, 109–116, 2003.
Burn, D. H., Hannaford, J., Hodgkins, G. A., Whitfield, P. H., Thorne, R., and Marsh, T.: Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow, Hydrol. Sci. J., 57, 1580–1593, https://doi.org/10.1080/02626667.2012.728705, 2012.
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical informatic-theoretic approach, Springer Verlag, New York, 2002.
CEH: Hydrological Review of 2001, Centre for Ecology and Hydrology, Oxfordshire, UK, 2002.
Download
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.