Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 19, issue 6 | Copyright
Hydrol. Earth Syst. Sci., 19, 2899-2910, 2015
https://doi.org/10.5194/hess-19-2899-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jun 2015

Research article | 22 Jun 2015

The water balance components of undisturbed tropical woodlands in the Brazilian cerrado

P. T. S. Oliveira1,2, E. Wendland1, M. A. Nearing2, R. L. Scott2, R. Rosolem3, and H. R. da Rocha4 P. T. S. Oliveira et al.
  • 1Department of Hydraulics and Sanitary Engineering, University of São Paulo, CxP. 359, São Carlos, SP, 13560-970, Brazil
  • 2USDA-ARS, Southwest Watershed Research Center, 2000 E. Allen Rd., Tucson, AZ 85719, USA
  • 3Queens School of Engineering, University of Bristol, Bristol, UK
  • 4Departamento de Ciências Atmosféricas, IAG, Universidade de São Paulo, Sao Paulo, Brazil

Abstract. Deforestation of the Brazilian cerrado region has caused major changes in hydrological processes. These changes in water balance components are still poorly understood but are important for making land management decisions in this region. To better understand pre-deforestation conditions, we determined the main components of the water balance for an undisturbed tropical woodland classified as "cerrado sensu stricto denso". We developed an empirical model to estimate actual evapotranspiration (ET) by using flux tower measurements and vegetation conditions inferred from the enhanced vegetation index and reference evapotranspiration. Canopy interception, throughfall, stemflow, surface runoff, and water table level were assessed from ground measurements. We used data from two cerrado sites, Pé de Gigante (PDG) and Instituto Arruda Botelho (IAB). Flux tower data from the PDG site collected from 2001 to 2003 were used to develop the empirical model to estimate ET. The other hydrological processes were measured at the field scale between 2011 and 2014 at the IAB site. The empirical model showed significant agreement (R2 = 0.73) with observed ET at the daily timescale. The average values of estimated ET at the IAB site ranged from 1.91 to 2.60 mm day−1 for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20 % and stemflow values were approximately 1 % of the gross precipitation. The average runoff coefficient was less than 1 %, while cerrado deforestation has the potential to increase that amount up to 20-fold. As relatively little excess water runs off (either by surface water or groundwater), the water storage may be estimated by the difference between precipitation and evapotranspiration. Our results provide benchmark values of water balance dynamics in the undisturbed cerrado that will be useful to evaluate past and future land-cover and land-use changes for this region.

Publications Copernicus
Download
Short summary
We determined the main components of the water balance for an undisturbed cerrado. Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation. The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold. The water storage may be estimated by the difference between P and ET.
We determined the main components of the water balance for an undisturbed cerrado....
Citation
Share